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Significance

 Plants respond to external 
stresses by redistributing 
resources from growth- to 
defense-related processes, often 
resulting in decreased yields. This 
results in growth–defense 
trade-offs, where improvement in 
one process comes at the cost of 
the other. Understanding the 
molecular mechanisms behind 
such trade-offs can help us 
design crop varieties with 
simultaneously improved stress 
tolerance and yields. To study 
growth–defense trade-offs in the 
context of metabolism, we have 
generated a large-scale 
reconstruction of potato 
metabolism, capturing the full 
known secondary metabolism in 
a major crop species. The model 
enables extensive analysis of the 
interplay between growth and 
defense processes, as showcased 
in the study, and is an excellent 
platform for further development 
and application.
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Understanding the molecular mechanisms behind plant response to stress can enhance 
breeding strategies and help us design crop varieties with improved stress tolerance, 
yield, and quality. To investigate resource redistribution from growth- to defense-related 
processes in an essential tuber crop, potato, here we generate a large-scale compartmen-
talized genome-scale metabolic model (GEM), potato-GEM. Apart from a large-scale 
reconstruction of primary metabolism, the model includes the full known potato sec-
ondary metabolism, spanning over 566 reactions that facilitate the biosynthesis of 182 
distinct potato secondary metabolites. Constraint-based modeling identifies that the 
activation of the largest amount of secondary (defense) pathways occurs at a decrease 
of the relative growth rate of potato leaf, due to the costs incurred by defense. We then 
obtain transcriptomics data from experiments exposing potato leaves to two biotic 
stress scenarios, a herbivore and a viral pathogen, and apply them as constraints to 
produce condition-specific models. We show that these models recapitulate experimen-
tally observed decreases in relative growth rates under treatment as well as changes in 
metabolite levels between treatments, enabling us to pinpoint the metabolic rewiring 
underlying growth–defense trade-offs. Potato-GEM thus presents a useful resource to 
study and broaden our understanding of potato and general plant defense responses 
under stress conditions.

systems biology | constraint-based metabolic modeling | growth-defence trade-offs |  
secondary metabolism

 The challenge of ensuring a secure supply of food for the rising global population is linked 
to improving not just the yield and quality but also the stress tolerance of major crops ( 1 , 
 2 ). Environmental stresses lead to annual losses amounting to billions of euros per crop. 
Apart from the detrimental effects of abiotic stresses, such as temperature changes, 
droughts, and floods, biotic stresses lead to yearly losses of up to 80% of crop yield ( 3   – 5 ). 
In the case of potato, especially damaging are viral infections and herbivore infestations, 
including Potato virus Y (PVY) ( 6 ) and Colorado potato beetle (CPB) ( 7 ,  8 ), respectively. 
Despite these concerns, the molecular processes underpinning and associating crop yield 
and defense responses are still not well understood ( 9 ,  10 ). Plants attacked by biotic 
stressors slow down their growth to preserve molecular resources and direct them for 
defense purposes, including production of signaling as well as defense compounds ( 9 ). 
Conversely, rapid plant growth to improve accessibility of resources (e.g., when seeking 
light during germination or due to a crowded environment) is often accompanied by 
increased susceptibility to pests and pathogens, as growth is prioritized over defense ( 11 ). 
This growth–defense trade-off is a fundamental principle of plant economics, allowing 
plants to balance growth and defense according to external conditions ( 9 ,  10 ). However, 
modern agricultural crops, including potato, have been bred to maximize yield- and 
growth-related traits at the expense of losing useful defense-related traits ( 12 ). To this end, 
improved understanding of the molecular mechanisms behind growth–defense trade-offs 
is a crucial step toward enhancing breeding strategies that could help design superior 
crops, combining high yields with the ability to defend against stress ( 1 ,  13 ).

 Plant defense responses are often systemic in that they have an effect beyond the infected 
or damaged tissue ( 14 ). They are mediated by complex signaling and regulatory networks 
which sense and respond to environmental perturbations ( 15 ,  16 ). Hormones, like salicylic 
acid and jasmonic acid, induce plant resistance mechanisms to either biotrophic pathogens, 
such as PVY ( 17 ,  18 ), or herbivores, such as CPB ( 7 ), respectively. Trade-offs between 
plant growth and defense typically occur within cellular metabolism, which comprises a 
complex network of biochemical reactions that synthesize and transform substances into 
energy and base components necessary for the various cellular tasks ( 19 ,  20 ). Here, plant 
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growth is mediated by primary, biomass-producing processes that 
include photosynthesis, respiration, and the synthesis and degra-
dation of carbohydrates, amino acids, and nucleic acids ( 21 ), 
whereas secondary metabolism facilitates the production of a 
plethora of signaling and defense compounds (so-called specialized 
metabolites) ( 22 ,  23 ). Lipid metabolism is also a critical subsystem 
interlinking the growth and defense processes ( 24 ), by providing 
precursors for many molecules in secondary metabolism and sig-
naling pathways.

 Growth–defense trade-offs have been studied using classical 
reverse genetics approaches in Solanaceae ( 25   – 27 ). For instance, 
overexpression of potato 3-hydroxy-3-methylglutaryl-CoA reduc-
tase homologs resulted in dwarfism and highest amounts of sterols 
( 28 ), and oxylipin-induced growth–defense trade-offs were shown 
in several plant species, including Arabidopsis , tomato, tobacco, 
and rice ( 29   – 31 ). Simulations of plant growth and development 
provide another way to study growth–defense trade-offs in specific 
genotypes and under particular environments, for instance using 
constraint-based mathematical modeling approaches based on 
genome-scale metabolic models (GEMs) ( 32   – 34 ). However, in 
silico analysis of trade-offs requires models that include processes 
underpinning growth and defense mechanisms, by integrating 
pathways from primary, secondary, and lipid metabolism. 
Moreover, there is presently a gap in representing and using the 
existing knowledge of plant secondary metabolic pathways, as 
models incorporating secondary pathways [e.g., in rice ( 35 ) or 
﻿Arabidopsis thaliana  ( 36 )] do not systematically dissect and quan-
tify growth–defense trade-offs. Existing studies of plant metabolic 
flux trade-offs using constraint-based modeling have been based 
merely on models of primary metabolism [e.g., A. thaliana  ( 37 , 
 38 ) and condensed representation of metabolism of diverse fruits 
( 39 )]. Therefore, to correctly interpret experimental data and study 
the effects of plant biotic interactions at the molecular level, it is 
imperative to refine and expand existing metabolic modeling 
resources to encompass not only the primary but also the full 
secondary metabolism in an essential food crop system, such 
as potato.

 Here, we present potato-GEM, a metabolic reconstruction of 
potato leaf metabolism that spans not only all critical primary and 
lipid metabolic processes, but also adds a full reconstruction of 
the known potato secondary metabolism. We then perform a gen-
eral analysis of how secondary metabolite production is linked to 
plant growth, determining the ability of the model to capture and 
quantify growth–defense trade-offs and to predict how resource 
limitation affects these trade-offs. We further process and analyze 
transcriptomic data from biotic stress experiments on potato 
leaves, capturing both insect pests (chewing herbivore, CPB) and 
pathogens (intracellular virus, PVY) interaction characteristics. 
To connect the enzyme-catalyzed reactions of potato-GEM with 
the underlying genes, we use the transcriptomic data to constrain 
reaction upper bounds and build a set of condition-specific mod-
els. We find that these models indeed reflect experimental obser-
vations of decreased growth under stress conditions and also result 
in predicted metabolite flux-sums, as proxies of metabolite levels, 
that match measured relative metabolite levels between control 
and treated plants. Finally, we perform an in-depth analysis of the 
condition-specific models using Monte Carlo sampling and path-
way enrichment analysis, obtaining further insights into the met-
abolic rewiring underpinning potato growth–defense trade-offs. 
Our study thus demonstrates the usefulness of secondary 
metabolism-expanded models, such as potato-GEM, in the con-
text of constraint-based modeling approaches, to help expand our 
knowledge and understanding of the molecular principles behind 
plant stress responses and environmental interactions. 

1.  Results

1.1.  Constructing Potato-GEM by Merging and Curating Multiple 
Metabolic Modules. To ensure an accurate reconstruction of 
potato metabolism, we followed a bottom–up approach that 
avoids issues with gap-filling due to the poor experimentally 
validated annotation in potato (2.1% of all protein-coding 
genes). To this end, we first merged the metabolic model of A. 
thaliana core metabolism (AraCore, spanning 549 reactions and 
407 metabolites) (32) and the single-tissue model of tomato 
metabolism, recently updated and expanded in the Virtual Young 
TOmato Plant (VYTOP, spanning 2,261 reactions and 2,097 
metabolites) (33) (SI  Appendix, Supplementary Methods M1). 
The rationale for initiating potato-GEM from these models is 
that tomato is a genetically and metabolically closely related plant 
from the Solanaceae family (40). Moreover, the Arabidopsis core 
metabolism constitutes the set of functionally conserved metabolic 
pathways across the dicot species (32). During the merging process, 
we identified an overlap of 298 reactions and 346 metabolites 
common to both models (Fig. 1A). However, the resulting model 
did not contain a functional secondary metabolism nor was it 
able to produce necessary lipid-related precursors. To resolve this 
issue, we further integrated the model with the recently developed 
Plant Lipid Module (24), identifying an overlap of 279 reactions 
and 403 metabolites present in the lipid module and the merged 
AraCore-VYTOP model (Fig.  1A). Moreover, we curated 363 
reactions from 106 pathways belonging to potato secondary 
metabolism and 23 related precursor pathways from the MetaCyc-
derived Plant Metabolic Network database (41, 42), adding an 
additional 203 reactions. This resulted in the potato-GEM model 
spanning 7,092 reactions and 3,801 metabolites (Fig. 1A), across 
16 unique compartments (Fig. 1B: only key compartments are 
shown since the majority are related to the Plant Lipid Module, 
Supp. files S1, S2). Compared with the tomato GEM in VYTOP, 
the number of blocked reactions (i.e., those unable to transport 
any flux) was reduced over 50-fold (Fig.  1C: ratio of blocked 
reactions 51.4% with VYTOP and 0.9% with potato-GEM), 
demonstrating the relevance of the bottom–up, well-curated 
reconstruction procedure.

 We next defined a leaf biomass growth reaction to use with 
potato-GEM metabolic simulations (SI Appendix, Supplementary 
Methods M2 ). Here, we measured the dry weight to fresh weight 
ratio as well as the total protein content of potato leaves 
(SI Appendix, Supplementary Methods M3 ). Additionally, quan-
titative data for various biomass components, including sugars, 
organic acids, amino acids, and lipids, were compiled through 
an extensive review of the literature ( 24 ,  33 ,  45           – 51 ). The leaf 
biomass thus comprised 67 compounds and an additional 122 
lipid-related compounds ( Fig. 1D   and SI Appendix, Table S1 , 
Supp. file S3). To ensure comparability of predicted growth rates, 
the component values were further calibrated to a total of 
1 g/gDW ( 44 ). This was achieved by proportionally increasing 
their quantities and setting the overall quantity of nucleic acids, 
for which experimental data were not available, similar to that 
of proteins ( Fig. 1D  : 14.5% of DW) ( 33 ). We then verified that 
potato-GEM is indeed capable of producing all 189 biomass 
components under standard phototrophic (light) conditions 
(SI Appendix, Fig. S1.1 and Supplementary Methods  M4 ). 
Moreover, compared with the existing AraCore and VYTOP 
models, potato-GEM includes a larger number of biomass pre-
cursors across multiple component classes ( Fig. 1E  : producing 
in total 71.8% or 11.7% more biomass precursors if lipids are 
disregarded, respectively). This supports the model’s secondary 
metabolite-producing functionality.D
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 Importantly, the reconstruction of secondary metabolism in 
potato-GEM captures the complete Solanum tuberosum  secondary 
metabolism as detailed in the Plant Metabolic Network database 
( 41 ,  42 ) (SI Appendix, Supplementary Methods M1 ). It covers the 
major classes including: i) alkaloids, such as alpha-solanine and 
alpha-chaconine, calystegines, and tropane alkaloids, ii) phenyl-
propanoid derivatives, such as flavonoids, coumarins, cinnamates, 
lignans, and lignins, iii) terpenoids, i.e., carotenoids and mono-, 
di-, tri-, and sesquiterpenoids, iv) phytoalexins, i.e., resveratrol 
and capsidiol, and v) hormones, including jasmonic acid, salicylic 
acid, abscisic acid, auxins, brassinosteroids, cytokinins, ethylene, 
and gibberellins ( Fig. 2A   and SI Appendix, Fig. S1.2 ). The inclu-
sion of these pathways enables the modeling of the production of 
defense compounds related to stress response (e.g., hormones), 
allowing us to study the effects and coupling of growth with sec-
ondary metabolite production ( 19 ,  52 ). The complete secondary 
metabolism spans over 566 reactions in 106 pathways, producing 
a total of 182 unique secondary metabolites (SI Appendix, 
Figs. S1.2 and S1.3 and Table S2 , Supp. file S4).          

1.2.  Secondary Metabolism Reconstruction Enables Quantifying 
Growth–Defense Trade-Offs. The refined potato-GEM model 
enabled us to investigate the coupling (53) between potato 
growth and stress response modes and to ascertain the possibility 
of growth–defense trade-offs. To this end, we investigated whether 
fluxes through secondary pathways and reactions are coupled to 
biomass production (growth, Fig.  2B). Here, the variability of 
fluxes of the final product-producing reactions in each secondary 
pathway were evaluated within the optimal biomass space using 
flux variability analysis (FVA) (54). Different fractions, ranging 
from 0 to 1, of the optimal relative growth rate were used (Fig. 2C). 
We observed that at the optimal relative growth rate, the majority 
(88%) of secondary pathways were either inactive, with computed 
flux ranges of 0 μmol/gDWh−1, or minimally active, with a limited 

flux range below 0.29 μmol/gDWh−1, occurring for 31 reactions 
(Fig. 2 C and D). Furthermore, with a decreasing relative growth 
rate from the optimum, the majority (>97%) of secondary pathways 
exhibited proportional increases of their flux ranges (Fig. 2C). This 
was supported by a significant negative correlation (Spearman 
ρ = −0.71, P-value < 10−16, SI Appendix, Fig. S2.1) between growth 
and flux through secondary metabolite production. The results 
demonstrated that the majority of secondary pathways are thus 
negatively coupled with the plants’ growth objective (Fig.  2D: 
194 reactions across 103 pathways). In addition, for 99% of these 
negatively coupled pathways, the predicted flux upper bounds were 
found to be strongly negatively correlated (Spearman ρ < −1.0, 
P-value < 10−16, SI Appendix, Fig. S2.2) with the relative growth 
rate. The remaining pathways exhibited either nonmonotonic 
changes (PWY-5751: phenylethanol biosynthesis, one reaction), 
or were inactive across the whole range of biomass production (two 
reactions from two pathways, SI Appendix, Fig. S2.3). Importantly, 
an optimal secondary metabolite production was observed at a 
fraction of 0.6 of the optimal relative growth rate, where the largest 
amount of secondary reactions and pathways were found to be 
active (Fig. 2D: 99% and 98%, respectively).

 The observed negative coupling between growth and secondary 
metabolism ( Fig. 2C  ) suggested that a growth–defense trade-off 
is occurring with these pathways. Therefore, to identify secondary 
metabolites that most affect the biomass objective function, we 
further computed shadow prices for demand reactions producing 
a secondary metabolite of interest ( 55 ) (SI Appendix, Supplementary 
Methods M4 ). These demonstrate how much a unit increase of 
flux through secondary pathway (defense) production decreases 
the flux through the biomass reaction (growth), which can be 
interpreted as a growth–defense trade-off factor ( Fig. 2B  ). We also 
implemented and applied a procedure to determine the energetic 
cost of secondary metabolites (SI Appendix, Supplementary Methods 
M4 ). In line with expectations, we found that the shadow prices 

A B C

D E

Fig. 1.   Constructing potato-GEM by merging and curating multiple modules. (A) Venn diagram of the four models that comprise potato-GEM, including AraCore 
(32), the basic single-tissue model from VYTOP (33), Plant Lipid Module (24) and additional manual curation of secondary metabolism based on the MetaCyc 
database (42, 43). (B) Number of core, lipid, and other primary as well as secondary metabolism reactions across the model’s key cellular compartments including 
multicompartment reactions. Inset shows the total number of reactions. (C) Depiction of the total number and blocked reactions across the MetaCyc pathway 
ontology. Inset pie charts show the ratio of blocked reactions in VYTOP and potato-GEM. Lower Inset shows a zoom in on the values of the bottom 17 pathways. 
(D) Depiction of potato biomass components based on experimentally measured values and after adjustment of total content to 1 g/gDW (44). (E) Quantification 
of the capability to produce biomass precursors across potato-GEM and the existing VYTOP (33) and AraCore (32) models.
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were significantly and strongly correlated (Spearman ρ  = 0.99, 
﻿P﻿-value < 10−16 ) with computed costs of metabolite production 
as well as with metabolite molecular weights (Spearman ρ  = 0.75, 
﻿P﻿-value < 10−16 , SI Appendix, Fig. S2.4 ), demonstrating the valid-
ity of the model. On average, across all coupled secondary path-
ways, we observed a 3.9 × 10−4  decrease of biomass flux with a 
unit increase of secondary metabolite production ( Fig. 2E  ). 
Moreover, we found that this growth–defense trade-off factor 
remains on average relatively equal across different secondary 
metabolite classes ( Fig. 2F  ). The exception was with alkaloids, 
exhibiting the largest trade-off factor of 7.1 × 10−4 . This was almost 
twofold and significantly (Wilcoxon rank-sum test P﻿-value = 
0.002) larger than with the remaining secondary metabolism 
classes, likely due to the large costs of their synthesis ( 56 ). 
Compared to primary metabolism, the growth–defense trade-off 
factor of secondary metabolites was almost twofold and signifi-
cantly (Wilcoxon rank-sum test P﻿-value = 1.3 × 10−11 ) higher than 
shadow prices obtained with cytosolic primary metabolites 
( Fig. 2E  : ~10−5 ). Average shadow prices for demand reactions of 
primary metabolites in the chloroplast were however relatively 
similar to those of secondary metabolites ( Fig. 2E  : 3.4 × 10−4 ), 
and further increased across the remaining compartments due to 
specialized metabolism, such as highly costly lipid production 
( 57 ). Considering the distribution of core metabolism mostly 
among the cytosol and chloroplast ( Fig. 1B  : ~78% of reactions), 
the results suggest that defense activation under stress requires a 
relatively higher amount of resources ( Fig. 2E  : up to twofold 
more) than the general rewiring of core metabolism.  

1.3.  Exploring the Effects of Resource Limitation on Growth and 
Defense. We next explored the possibility that resource constraint 
is a primary reason for the inverse growth–defense relationship, 
whereby providing more resources would reduce growth–defense 
trade-offs and allow plants to simultaneously grow and defend 
themselves (10, 58). To this end, we proportionally limited or 

increased the availability of key resource inputs: CO2, light, 
nitrogen, or a combination of all three (Fig. 3A and SI Appendix, 
Supplementary Methods M4). We observed proportional decreases 
in the predicted growth rates when limiting resources, reaching no 
growth when resources were completely withdrawn (Fig. 3B: note 
that a resource ratio of 1 is used to denote resource consumption 
at the optimal relative growth rate). Conversely, as expected, 
no change in growth was observed when increasing resource 
availability above a resource ratio of 1 (SI Appendix, Fig. S3.1). The 
secondary metabolite production capacity decreased significantly 
(Wilcoxon rank-sum test P-value < 10−16, measured between the 
resource ratio of 1 and 0) and proportionally with varying CO2 
and light availability (Fig. 3C). However, with nitrogen limitation, 
the defense response increased by over twofold for a nitrogen 
ratio between 1 and 0 (Wilcoxon rank-sum test P-value < 0.002). 
This further unlocked the model’s optimal secondary metabolite 
production reached at a fraction of 0.6 of the optimal relative 
growth rate within the given constraints. Increasing resource 
availability, on the other hand, did not lead to an increased 
secondary production capacity (SI  Appendix, Fig.  S3.2). The 
results suggest that under actual in situ conditions, where plants 
do not grow at the metabolic optimum (as depicted in Fig. 3C), 
access to more resources could indeed decrease growth–defense 
trade-offs by allowing plants to simultaneously grow and defend 
themselves (10). Moreover, the availability or limitation of certain 
key resources, such as nitrogen, can also strongly affect the defense 
capacity and is a point of possible improvement.

1.4.  Capturing Biotic Stress Responses with Transcriptomics 
Data. Our next aim was to investigate a range of common potato 
biotic stress scenarios and the growth–defense trade-offs that they 
elicit. To this end, we performed a transcriptomics experiment 
based on the herbivore attack of potato leaves with the CPB and 
complemented it with previously published data on the pathogen 
interaction with the PVY (6) (Fig. 4A). Briefly, plants were exposed 

A B C

D E F

Fig. 2.   Secondary metabolism reconstruction enables quantifying growth–defense trade-offs. (A) The number of reactions, pathways, and products across 
secondary metabolism classes in the reconstruction. (B) Schematic depiction of the studied growth–defense trade-off relationships by either observing the effects 
of growth limitation on defense activation (as depicted in panels C and D) or vice versa (panels E and F). (C) Depiction of predicted growth–defense trade-off 
capabilities as the absolute range of flux through secondary metabolic pathways in response to the varying ratio of optimal biomass production in FVA. (D) Ratio 
of inactive secondary pathways and reactions in response to the varying ratio of optimal biomass production in FVA, showing that the majority of secondary 
pathways are coupled with growth and exhibit growth–defense trade-offs. (E) Distribution of shadow prices of primary and secondary metabolites, depicting the 
decrease of biomass flux per unit increase of flux through different parts of metabolism. (F) Distribution of shadow prices across secondary metabolite classes. 
The red line denotes median value across the whole secondary metabolism.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 5
.4

4.
34

.1
39

 o
n 

A
ug

us
t 1

4,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

5.
44

.3
4.

13
9.

http://www.pnas.org/lookup/doi/10.1073/pnas.2502160122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2502160122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2502160122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2502160122#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2502160122#supplementary-materials


PNAS  2025  Vol. 122  No. 32 e2502160122� https://doi.org/10.1073/pnas.2502160122 5 of 11

to two beetles per leaf for 30 min, and 24 h post infection the 
leaf region surrounding the damaged part was sampled in parallel 
with noninfested leaves (control) and processed for RNA-Seq 
(SI  Appendix, Supplementary Methods M3 and M54). In the 
previously published PVY experiment (18), leaves were inoculated 
with PVY and tissue immediately surrounding the site of viral 
multiplication was sampled when the hypersensitive resistance 
response was fully established (4 d after inoculation). This was 
performed in parallel with control noninoculated leaves tissue, 
and all tissues were then processed for RNA-Seq (SI Appendix, 
Supplementary Methods M5). Biological triplicates were analyzed 
per treatment, resulting in a total of 12 samples.

 Nonmetric multidimensional scaling analysis of transcript 
counts indicated clear separation among treated and control sam-
ples in both experiments ( Fig. 4B   and SI Appendix, Fig. S4.1 and 
﻿Supplementary Methods  M5 ). We also observed significant corre-
lation (Spearman ρ  = 0.77, P﻿-value < 10−16 ) of transcript counts 
among the control samples of both experiments (SI Appendix, 
Fig. S4.2 ). While correlation analysis among all 12 samples 
showed a clear distinction between PVY control and treatment 
samples, this was not observed with CPB samples ( Fig. 4C  ). The 
CPB experiment also captured a smaller number of differentially 
expressed genes (325 DEGs), compared to the PVY experiment 
(9,289 DEGs) ( Fig. 4D  , Supp. file S5). These differences were 
likely due to the shorter CPB exposure time and thus milder 
observed defense response than with PVY ( 18 ). Nevertheless, fur-
ther DEG and enrichment analysis using plant specific MapMan 
ontology terms ( 59 ) showed i) an increase in hormonal produc-
tion, specifically salicylic acid with PVY ( 17 ) and jasmonic acid 
with CPB ( 8 ,  62 ), which are known signaling cascade regulators 
of the specific biotic stresses, ii) general upregulation of multiple 
secondary pathways, including those belonging to glycoalkaloid 
( 63 ), phenylpropanoid ( 64 ,  65 ) and terpenoid classes ( 66 ), iii) 
lowered photosynthetic activity with PVY ( 67 ), iv) upregulated 
sucrose degradation factors with PVY likely due to increased 
sucrose accumulation ( 65 ), as well as v) downregulation of biotic 
stress response-related factors due to an overactivated signaling 
response ( Fig. 4E  , Supp. file S6) ( 16 ). This suggested that known 
responses as a consequence of biotic stress and growth–defense 
trade-offs were indeed captured in both experiments ( 18 ).  

1.5.  Transcriptome-Constrained Models Recapitulate Reduced 
Growth in Stress Response. To further study the characteristics 
of biotic interactions, we next constructed models constrained by 
the transcriptomics data (Fig. 5A). To this end, we first annotated 
model reactions with gene protein reaction (GPR) associations, 
which were obtained from the MetaCyc-derived Plant Metabolic 
Network database (41) (S. tuberosum subset) as well as by 
translating GPRs with Arabidopsis gene identifiers from the Plant 

Lipid Module (24) and AraCore (32) modules (SI  Appendix, 
Supplementary Methods M6). Here, orthologous genes between 
Arabidopsis and potato were identified according to Plaza v5.0 (68) 
orthologs using clustering algorithms as well as BLAST reciprocal 
best hit search (69, 70). This yielded a set of 2,173 potato gene 
identifiers and resulted in 3,474 reactions (49%) annotated 
with GPR associations comprising, on average, two unique gene 
identifiers (Fig. 5B and SI Appendix, Fig. S5.1 and Table S3). As 
expected, better coverage of GPR-annotated reactions of 64% was 
achieved with the core metabolism compared to a ~50% coverage 
of both the lipid and secondary metabolism (Fig.  5 B, Inset). 
However, secondary metabolism reactions were annotated with 
GPR associations that comprised significantly more unique gene 
identifiers than those in primary metabolism (Wilcoxon rank-
sum test P-value < 3 × 10−13), with a 1.5-fold higher number of 
genes on average (Fig. 5C). Within secondary metabolism, apart 
from precursors exhibiting the highest coverage (85%), terpenoid, 
toxin, and phenylpropanoid derivative classes achieved a better 
than average coverage of 49% or higher (Fig. 5D).

 Next, we integrated the transcriptomics data with the 
potato-GEM model, by evaluating GPR associations based on the 
provided transcriptomic measurements to constrain the model’s 
upper bounds of flux across reactions (SI Appendix, Supplementary 
Methods M5 ). This resulted in 12 transcriptomics-constrained 
models, one for each replicate of the data treatment (control and 
treated) and experiment type (CPB and PVY; see  Fig. 4 ). An initial 
14,404 and 19,367 transcripts from the CPB or PVY experiment, 
respectively, were mapped to GPR associations across 3,140 and 
3,207 reactions, respectively (SI Appendix, Fig. S5.2 ). Compared 
to the overall proportion of essential reactions in the model of 
6.2% (439), without which the model cannot produce the target 
biomass ( 71 ), a significantly (Fisher’s exact test P﻿-value = 1.1 × 
10−4 ) larger proportion of ~8.6% were found to be GPR-annotated 
(SI Appendix, Fig. S5.1 : 267 and 277, respectively). We observed 
that the variability of the upper bounds of the CPB dataset con-
strained models differed significantly (Wilcoxon rank-sum test 
﻿P﻿-value < 10−16 ) across treatments (SI Appendix, Fig. S5.3 ). Here, 
models corresponding to treated samples exhibited an average 
2.5-fold increase in variability of upper bounds compared to con-
trols. However, this was not the case with the PVY dataset, where 
the variability remained approximately equal between treated and 
control models. Moreover, the transcriptomics-constrained reac-
tions were found to comprise the full range of pathways covering 
96% of the key cellular processes as existing in the original uncon-
strained model ( Fig. 1C   and SI Appendix, Fig. S5.4 ).

 Finally, we observed that under both biotic stress scenarios, the 
predicted relative growth rates (SI Appendix, Supplementary 
Methods M4 : phototrophic regime as applied in the experimental 
setup) with the constrained models of treated plants were on 

A B C

Fig. 3.   Exploring the effects of resource limitation on growth and defense. (A) Schematic depiction of the analysis of resource limitation or expansion, where 
the key resources CO2, light, and nitrogen were varied within a range of 0 to 1 relative to the resource consumption flux obtained at an optimal growth rate of 1. 
(B) Effect of resource limitation on the predicted relative growth rate (biomass optimum). (C) Effect of resource limitation on the range of secondary metabolite 
production (defense), computed at the fraction of 0.6 of the optimal relative growth rate to observe the largest amount of possible active secondary metabolism.
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average 75% lower than that of controls ( Fig. 5E  ). Here, 39.6% 
of the optimal growth rate was observed with CPB and 9.8% with 
PVY, respectively. This is in line with experimental findings, where 
growth rates under biotic stress treatments have generally been 
found to be lower compared to controls ( 72 ,  73 ). To further 

validate model predictions, we applied randomized Monte Carlo 
sampling using the Artificial centered hit and run algorithm ( 74 ) 
(SI Appendix, Supplementary Methods M4 ). We ensured that 
growth–defense trade-offs were accurately captured in the sam-
pling procedure by using appropriately set reaction bounds. These 

A B C

D E

Fig. 4.   Capturing biotic stress responses with transcriptomics. (A) Schematic depiction of biotic stress transcriptomics experiments with CPB and PVY. (B) Principal-
coordinate analysis of Bray–Curtis dissimilarity between transcript counts across experiments and treatments. (C) Heatmap and dendrogram visualization of 
hierarchical clustering on Bray–Curtis dissimilarity between sample replicates across experiments and treatments. (D) Ratio of differentially expressed genes 
(DEGs) (BH-corrected P-value < 0.05 and abs(log2FC) > 2) belonging to a MapMan (59, 60) category vs. the total number of DEGs across experiments. Ratios 
above 0.025 shown. (E) Transcriptomics responses on the level of pathways. MapMan-defined pathways (59, 60) enriched with differentially regulated genes 
were calculated using Gene Set Enrichment Analysis (61) (BH-corrected P-value < 0.05).

A B C

D E F

Fig. 5.   Transcriptome-constrained models recapitulate reduced growth in stress response. (A) Schematic depiction of the procedure to construct a set of 
CPB- and PVY-transcriptome constrained models. (B) Number of gene identifiers present in GPR associations across GPR-annotated reactions. The red line 
denotes an average value of 2. Inset depicts the ratio of GPR-annotated reactions across the general metabolic types. (C) Number of gene identifiers present in 
GPR associations of GPR-annotated reactions across the general metabolic types. The red line denotes the average value. (D) Ratio of GPR-annotated reactions 
across secondary metabolism classes. The red line denotes the average value. (E) Predicted biomass production with the transcriptome constrained models 
under a phototrophic regime. (F) Validation of model performance: Correlation analysis of predicted metabolite flux-sums (as proxies for metabolite levels) 
from randomized sampling results using PVY transcriptomics-constrained models and published relative metabolite levels from metabolomics experiments 
upon potato PVY infection (65).D
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were obtained from FVA performed over a range of fractions of 
the biomass optimum, between optimal secondary metabolism 
production (at the fraction of 0.6 of the optimal relative growth 
rate) and optimal biomass production (fraction of 1; see  Fig. 2C  ). 
Additionally, we considered that trade-offs are related to known 
hormone responses and mediated by extensive signaling cascades 
( 15 ) that are not the part of the present metabolic model. We thus 
imposed that the models of nonstressed control conditions pro-
duce no jasmonic acid with CPB and no salicylic acid with PVY, 
respectively, based on experimental and published observations 
( 8 ,  17 ,  62 ). Comparing the flux sampling results and published 
potato metabolomics data 3 d post PVY infection ( 65 ), we found 
a significant correlation (Spearman ρ  = 0.48, P﻿-value < 0.004) 
between log-transformed measured relative metabolite levels and 
predicted metabolite flux-sums (as proxies for metabolite levels) 
( 75 ,  76 ) between treatment and control for 33 key metabolites 
present in the models ( Fig. 5F   and SI Appendix, Table S4 ). 
Therefore, our results indicated that the transcriptomics-constrained 
models result in predictions that are well supported by experiments 
( 36 ,  77 ), supporting the usefulness of these models to further 
study biotic stress-induced growth–defense trade-offs in the con-
text of metabolism.  

1.6.  Exploring the Mechanisms of Growth–Defense Trade-
Offs under Biotic Stress. We next set out to perform a large-
scale treatment-specific analysis of metabolism to obtain a global 
picture of metabolic responses under biotic stress. To this end, 
we used the randomized Monte Carlo sampling results described 
above (Fig.  6A and SI  Appendix, Supplementary Methods M4). 
We performed differential flux analysis to identify reactions that 
exhibited significant (Kolmogorov–Smirnov test BH-corrected P-
value < 0.05) and over twofold differences in flux values between 
treatment and control conditions, on average (SI  Appendix, 
Supplementary Methods M7, note that replicates were pooled for 
these computations). In relation to the fold-change cutoff used, 
which varied from 2 to 10, the analysis revealed between 2,343 
and 644 (33% and 9%) differential reactions with CPB, and 
between 3,402 and 1,751 with PVY (48% and 25%), respectively 
(Fig.  6B and SI  Appendix, Fig.  S6.1). With both experiments, 
the fluxes of differential reactions were on average 90% lower in 
treatment models compared to control ones, which was likely 
due to a higher number of downregulated reactions compared 
to up-regulated ones observed with both experiments (Fig. 6B). 
This was especially prominent with PVY, where the number of 
downregulated reactions was fourfold higher. Despite this, fluxes 
across secondary metabolism increased by ~1.5-fold between 
treatment and control models in both experiments (SI Appendix, 
Fig. S6.2 and Table S5).

 To determine the pathways comprising the reactions exhibiting 
differential fluxes across conditions, we next performed enrich-
ment analysis of metabolic subsystems at the level of Biocyc ontol-
ogies ( Fig. 6 C –E   and SI Appendix, Fig. S6.3 and Tables S5 and 
S6 ). We found that CPB models were significantly (Fisher’s exact 
test BH-corrected P﻿-value < 0.05) enriched in 21 BioCyc path-
ways, whereas PVY models spanned 28 pathways ( Fig. 6 D  and 
﻿E  ). In both experiments, multiple secondary metabolism pathways 
displayed differential fluxes ( Fig. 6C  : a total of 14 secondary and 
3 precursor pathways with CPB, and 15 secondary and 5 precursor 
pathways with PVY, respectively), with a ~twofold higher number 
of upregulated secondary pathways than downregulated ones. 
Interestingly, we observed that different secondary pathways were 
differentially regulated under the different biotic stresses ( Fig. 6D  ). 
For instance, viral infection caused the induction of hormonal 
pathways, including salicylic acid and cis-zeatin, as well as multiple 

terpenoids, phenylpropanoids, and alkaloids. Insect feeding also 
led to the increased synthesis of multiple stress-responsive hor-
mones, including jasmonic acid, trans-zeatin and abscisic acid, as 
well as increased terpenoid production. Indeed, besides salicylic 
and jasmonic acid, cytokinins are also known to be involved in 
plant stress responses, besides their main role in development ( 78 , 
 79 ). With both biotic stresses, terpenoid precursors were induced 
in line with the observed terpenoid production, known to protect 
plants from both viral infections and herbivores by inducing indi-
rect defenses and priming neighboring plants ( 80 ). On the other 
hand, specific growth-promoting hormones were observed to be 
downregulated ( Fig. 6D  : brassinolides and gibberellins). 
Interestingly, apart from downregulation of certain resource-related 
primary metabolic pathways, energy-related metabolism was 
induced in PVY models ( Fig. 6E  ).

 Next, we analyzed the correlation between the sampled fluxes 
of the enriched secondary and primary pathways under the biotic 
stress conditions. Fluxes were summed over the respective reac-
tions per pathway to obtain the total pathway flux per 
experiment-treatment combination (SI Appendix, Supplementary 
Methods M7 ). Indeed, significant correlations (|Spearman ρ | > 
0.11, P﻿-value < 3.6 × 10−4 ) were found among almost all pathways 
( Fig. 6 F  and G  : secondary vs. primary metabolism pathways 
shown depicting growth–defense trade-offs). We further observed 
that specific groups of pathways demonstrated similar growth–
defense trade-off patterns in the context of secondary vs. primary 
pathway flux correlations (SI Appendix, Figs. S6.4 and S6.5 ). For 
instance, with the CPB models, four groups of secondary 
metabolism-related pathway responses were identified using clus-
tering based on the cosine distance ( Fig. 6F   and SI Appendix, 
Fig. S6.4 and Supplementary Methods  M7 ). Here, we observed a 
group showing strong negative correlation (Spearman ρ  < −0.76, 
﻿P﻿-value < 10−16 ) between fluxes in the induced stress-related hor-
mone pathways (jasmonic and salicylic acid) as well as terpenoids 
and their precursors, and the downregulated primary pathways 
(SI Appendix, Table S7 ). Similarly, four distinct groups were 
observed with PVY ( Fig. 6G   and SI Appendix, Fig. S6.5 ), showing 
strong positive correlation (Spearman ρ ≥  0.69, P﻿-value < 10−16 ) 
between upregulated hormonal and secondary pathways and the 
induced energy metabolism, and negative correlation (Spearman 
﻿ρ  ≤ −0.42, P﻿-value < 10−16 ) between these secondary pathways 
and downregulated primary pathways (SI Appendix, Table S8 ). 
Conversely, the downregulated growth-related hormones were 
negatively correlated (Spearman ρ  ≤ −072, P﻿-value < 10−16 ) with 
energy metabolism and positively (Spearman ρ  ≤ −0.44, P﻿-value 
< 10−16 ) with the remaining primary pathways. This showcases 
how the specific primary metabolic rewiring, which underlies sec-
ondary defense activation and production under stress conditions, 
can be pinpointed, and suggests the existence of distinct groups 
of metabolic trade-offs useful for further study.   

2.  Discussion

 In the present study, we asked whether we can explain and quantify 
plant growth–defense trade-offs through metabolic flux signatures 
obtained by constructing and analyzing a sufficiently comprehen-
sive and accurate model of primary and secondary metabolism in 
the major crop plant, potato. To this end, we developed and applied 
potato-GEM, a GEM constructed by merging multiple models 
( 32 ,  33 ) and modules ( 24 ) ( Fig. 1A  ), and includes a reconstruction 
of the full potato secondary metabolism according to the Plant 
metabolic network ( 41 ) MetaCyc database ( 42 ) ( Fig. 2A  ). We 
demonstrated that through its comprehensiveness and the second-
ary metabolism reconstruction, the model enables exploring the D
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principles of plant growth–defense trade-offs in the context of 
metabolism and under biotic stress.

 The bottom–up approach that we applied to construct 
potato-GEM, leveraging existing knowledge and careful curation, 
contrasts a top–down approach, where genome-wide metabolic 
networks are constructed automatically from genome annotations 
and reliant on gap-filling prior to further curation ( 71 ). This avoids 
the need of relying on external databases or models from nonre-
lated organisms in gap-filling, as is frequently the case in modern 
metabolic reconstructions, which pollute the models with reac-
tions from nonrelated organisms ( 81 ). We leveraged the informa-
tion from three state-of-the-art resources on metabolism from 
higher plants, namely a AraCore ( 32 ), providing a highly curated 

model for central metabolism in the model C3 plant, A. thaliana , 
VYTOP ( 33 ), providing a larger metabolic model tailored to 
tomato, and the Plant Lipid Module ( 24 ), that offers the largest 
and most detailed model of plant lipid metabolism ( Fig. 1A  ). All 
of these models have been extensively manually curated and tested 
in a number of studies. Further inspection pointed to the need 
for careful manual curation of the diverse pathways of secondary 
metabolism, that are only partly included in a few models dedi-
cated to these pathways ( 35 ,  36 ,  82 ). Thus, up to date, none of 
the existing plant metabolic models offers a detailed inclusion of 
the full complement of well-characterized pathways of hormonal 
biosynthesis or secondary metabolism ( Fig. 2A   and SI Appendix, 
Table S2 ). Moreover, we showed that the number of GPR-annotated 

A B C

D E

G

F

Fig. 6.   Exploring the mechanisms of growth–defense trade-offs under biotic stress. (A) Schematic depiction of the randomized sampling procedure applied 
to investigate the enrichment of metabolic subsystems among biotic stress treatment and control models. (B) Number of identified reactions with differential 
fluxes at a fold-change cutoff of five (Kolmogorov–Smirnov test BH-corrected P-value < 0.05). Upregulated (up), downregulated (down), and total (all) number 
of reactions depicted separately. (C) The number of significantly (Fisher’s exact test BH-corrected P-value < 0.05) up- and down-regulated BioCyc pathways 
according to differential reactions. (D) Heatmap of secondary metabolism BioCyc pathways significantly (Fisher’s exact test BH-corrected P-value < 0.05) enriched 
in differential reactions (SI Appendix, Table S6). (E) Heatmap of primary metabolism BioCyc pathways significantly (Fisher’s exact test BH-corrected P-value < 
0.05) enriched in differential reactions. (F and G) Correlations between total fluxes of the enriched (Fisher’s exact test BH-corrected P-value < 0.05) secondary 
vs. primary pathways, demonstrating growth–defense trade-offs, with the (F) CPB and (G) PVY models. Dendrograms depicting grouping of profiles shown in 
SI Appendix, Figs. S6.4 and S6.5, Spearman correlation coefficient used (n = 1,000 samples).
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reactions is proportional to the model size, following the trend 
defined by a variety of published plant models (SI Appendix, 
Fig. S5.1 and Table S9 ). The number of blocked reactions was 
however the lowest among all the compared published models 
( Fig. 1C   and SI Appendix, Table S9 ). Finally, potato-GEM was 
validated with experimental measurements, by i) recapitulating 
stunted potato growth under stress ( 72 ,  73 ) ( Fig. 5E  ), ii) recapit-
ulating relative metabolite levels under PVY infection ( 65 ) 
( Fig. 5F  ), and iii) demonstrating correlations between computed 
metabolite costs and metabolite molecular weights (SI Appendix, 
Fig. S2.5 ).

 Similarly to growth ( 32 ,  33 ), plant responses to abiotic and 
biotic stress comprise a large set of cellular processes ( 15 ,  16 , 
 52 ). In contrast to targeted in planta experimental research that 
may be limited to studying merely a subset of different molecular 
responses at once ( 9 ), in silico mathematical modeling of cellular 
processes such as metabolism ( 24 ,  32 ) and signaling ( 15 ,  16 ) 
enables us to jointly capture and examine the full range of cel-
lular responses. The potato-GEM model thus allowed us to 
observe, explore, and interpret the rewiring of plant metabolism 
from growth to defense-driven responses. The analysis of growth–
defense trade-offs was performed in two ways. First, we directly 
probed the model using flux balance analysis (FBA) and FVA 
( 54 ,  83 ) ( Figs. 2 B   and  3A  ), either by i) decreasing the relative 
growth rate (fraction of biomass optimum) and observing how 
defense pathways are unlocked ( Fig. 2 C  and D  ), ii) computing 
shadow prices for demand reactions producing secondary metab-
olites to determine the effects of the production of these metab-
olites on growth ( Fig. 2 E  and F  ), or iii) testing the effect of 
limiting different key input resources on the growth–defense 
trade-offs ( 10 ,  58 ) ( Fig. 3 B  and C  ). Second, we constrained the 
model according to experimental gene expression measurements 
under biotic stress ( 18 ) ( Fig. 4 ) and then analyzed model pre-
dictions by performing i) FBA ( Fig. 5E  ), ii) metabolite flux sums 
and iii) a sequential combination of FVA and randomized sam-
pling followed by differential flux analysis and pathway enrich-
ment analysis ( 74 ,  84 ) ( Fig. 6 ).

 As a result of the first approach, we found that the effects of 
decreasing the relative growth rate (flux through the biomass reac-
tion) were significantly negatively correlated with increasing flux 
through secondary pathways ( Fig. 2C  ), enabling us to quantify 
specific general principles of growth–defense trade-offs. 
Specifically, we identified that the largest number of defense-related 
secondary metabolism pathways are active at a decrease of ~40% 
of the potato relative growth rate ( Fig. 2C  : fraction of biomass 
optimum of 0.6). Further, compared to primary metabolism, we 
found that the secondary metabolism response involves more 
costly metabolic processes, based on measuring the effect of per-
turbing secondary metabolite production ( Fig. 2E  : unit change 
flux through secondary pathways) on growth (flux through bio-
mass reaction). The cost of diverted resources is also, on average, 
approximately equal across the secondary metabolite classes 
( Fig. 2F  ). Indeed, it is known that due to the costliness of diverting 
energy and resources away from key processes, such as growth and 
reproduction ( 85 ), cells employ multiple strategies to lower the 
high metabolic costs of defense ( 23 ). Apart from fine-tuning sec-
ondary metabolite production via gene expression, metabolite 
multifunctionality, and effective recycling ( 23 ), balancing the 
objectives between biomass or defense production is a key cellular 
strategy defined by the spectrum of resistance and tolerance of the 
underlying plant genotype ( 85 ). Last, we found that resource lim-
itation has a profound effect on growth–defense trade-offs, effec-
tively decreasing defense rewiring due to a lack of resources 
( Fig. 3C  ). This supports the existing resource allocation theory 

( 58 ,  86 ), whereby resource constraints are a primary reason for 
the inverse growth–defense relationship. Namely, since plants 
typically do not optimize merely the growth objective and thus 
do not necessarily grow at the metabolic optimum, they can find 
themselves somewhere between the minimum and maximum 
modeled growth rate ( Fig. 3B  : 0 to 1 relative growth rate). Thus, 
providing more resources, such as increasing specific nutrients 
and/or light ( Fig. 3C  ), would reduce growth–defense trade-offs, 
resulting in more secondary metabolism activation at a higher 
growth rate and thus allowing plants to simultaneously grow and 
defend ( 10 ). On the other hand, the availability of certain nutri-
ents might also have an opposite effect, as was found for nitrogen 
( Fig. 3C  ), suggesting that the level of such resources needs to be 
further fine-tuned with respect to the system state in the 
resource-growth–defense spectrum.

 To apply potato-GEM to study growth–defense trade-offs 
under biotic stress, we first performed and processed transcrip-
tomics experiments exposing potato leaves to CPB (this study) 
and PVY ( 18 ), respectively ( Fig. 4A  ). According to differential 
gene expression and pathway enrichment analyses of the transcrip-
tomics data, both experiments captured the full expected response 
of their corresponding stresses ( Fig. 4 D  and E  ), despite the CPB 
experiment characterizing a more early stage of the stress response 
than was the case with PVY ( 18 ). By revising the potato-GEM 
gene-protein-reaction (GPR) associations that link gene expression 
and reactions ( Fig. 5 A  and B  ), we constrained reaction upper 
bounds according to the measured gene expression levels ( 87 ,  88 ). 
This resulted in a set of condition-specific models, which, when 
predicting optimal growth rates using FBA, predicted decreased 
growth under biotic stress compared to controls ( Fig. 5F  ), in 
accordance with published experimental observations. For 
instance, in a study measuring the effect of CPB damage on potato 
growth rates in different plant growth stages, damage during both 
the vegetative and tuber-bulking phases led to decreased haulm 
and tuber growth rates ( 73 ). Similarly, PVY infected plants, grown 
from infected seed tubers, displayed slower growth rates and lower 
tuber yields compared to plants grown from noninfected tubers 
( 72 ). Enzyme-constrained models offer an improvement over the 
present approach, and allow accounting for posttranscriptional 
regulation influencing metabolic fluxes beyond transcriptomics 
data constraints ( 89 ). However, their usage requires integration 
and availability of turnover numbers, which are presently not 
available with a great coverage for potato.

 Finally, we performed Monte Carlo sampling of the condition- 
specific models. Using PVY infection metabolomics data ( 65 ), we 
showed that the relative changes of computed metabolite 
flux-sums, which served as proxies for metabolite levels, were sig-
nificantly correlated with relative measured metabolite levels 
between treatment and control ( Fig. 5F  ). By further differential 
flux and pathway enrichment analysis ( Fig. 6A  ), we observed a 
large and significant fraction of reactions exhibiting differential 
fluxes between controls and biotic-stress treatments with both 
experiments ( Fig. 6 B  and C  ). These differential flux reactions were 
enriched both in primary metabolic pathways as well as those 
involved in secondary metabolite and hormone production ( Fig. 6 
﻿D  and E  ), in line with previous observations ( 8 ,  90 ). Furthermore, 
analysis of the correlations among the sampled secondary and 
primary pathway flux states enabled us to directly investigate met-
abolic growth–defense trade-offs and how different defense path-
ways are activated or deactivated in accordance with specific 
primary metabolic changes under biotic stress ( Fig. 6 F  and G  ). 
These concerted metabolic changes point to interesting areas of 
further study as they enable the development of strategies to con-
trol or alleviate multiple growth–defense trade-offs possibly by D
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perturbing primary metabolic responses. Apart from this, our 
results demonstrated how metabolic modeling is a useful expan-
sion of transcriptomics analysis and a complement to the analysis 
of immune signaling network responses ( 8 ,  15 ,  18 ), as it can 
highlight potentially different underlying aspects of growth–
defense mechanisms that are not clearly observable at the gene 
regulatory or molecular signaling levels ( 91 ,  92 ).

 To our knowledge, this is presently the most comprehensive 
metabolic model of potato ( 93 ), the third most consumed food 
crop globally. The secondary metabolism reconstruction is also 
useful across the Solanaceae  family, which includes staples, such 
as tomato and pepper, as well as Nicotiana  species ( 94 ). These 
economically important plants have large amounts of published 
data on biotic as well as abiotic stress and combinations thereof 
available, and are close relatives of potato, meaning that they share 
with it the majority of their metabolism, including secondary 
metabolism ( 40 ,  41 ,  95 ,  96 ). Therefore, repurposing potato-GEM 
to study related organisms requires merely i) adapting the second-
ary metabolism, ii) reconfiguring the biomass function and iii) 
redefining gene-protein-reaction associations, by finding orthologs 
from potato or Arabidopsis  or obtaining them from online data-
bases. Besides repurposing potato-GEM across related species, 
there are potentially multiple further avenues of future develop-
ment with this model, such as multitissue ( 33 ,  97 ) and multispe-
cies ( 98 ,  99 ) modeling. Moreover, as a further option to increase 
the capacity of interpreting growth–defense trade-offs, the meta-
bolic model could be integrated with signaling and regulatory 
networks, within larger multidomain modeling frameworks ( 91 , 
 92 ). Apart from cell maintenance and growth, this would enable 
capturing also the decision-making activities of the cell, such as 
sensing and responding to environmental changes and regulating 
metabolism through the activities and abundances of enzymes 
( 16 ,  100 ), likely resulting in a more complete and accurate picture 
of molecular responses and trade-offs. In regard to agriculture and 
biotechnology, the model has potential broad applications for crop 
breeding and metabolic engineering ( 101 ,  102 ). Here, more 
advanced and complete models enable a larger potential for design 
of intervention strategies. For instance, as demonstrated by the 
present analysis of growth–defense and resource trade-offs, the 
model could be used to optimize resource allocation to develop 
stress-resistant crop varieties. The underlying aim would be to 
identify and program plants to simultaneously grow and defend 
( 9 ,  10 ), optimizing both functions in terms of specificity and 

resource consumption, by i) producing only the required defense 
compounds under certain conditions, ii) optimizing growth by 
preventing certain resources required for growth to be reallocated 
to defense, iii) optimizing defense production by identifying and 
diverting different resources will less impact on growth that could 
be used for production of the important defense compounds, iv) 
identifying external conditions or nutrient/resource perturbations 
that would positively impact growth or defense or their trade-offs, 
toward stress resistance. Therefore, potato-GEM represents a 
highly useful resource to study and broaden our understanding of 
potato as well as general plant defense responses under different 
types of biotic and abiotic stress.  

3.  Methods

Metabolic model construction, leaf biomass composition, constraint-based mode-
ling procedures, experimental procedures, transcriptomics data analysis, revision 
of gene-protein-reaction associations, statistical data analysis, and software usage 
are detailed in the supplement (SI Appendix, Supplementary Methods M1–M8). 
The model and related files, including Supp. files S1–S6, as well as source code 
and data to reproduce the results were deposited to the Github repository at 
https://github.com/NIB-SI/Potato-GEM.

Data, Materials, and Software Availability. Metabolic model and annotations 
and transcriptomics data have been deposited in GitHub (https://github.com/
NIB-SI/Potato-GEM). All other data are included in the article and/or SI Appendix.
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