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Understanding the molecular mechanisms behind plant response to stress can enhance
breeding strategies and help us design crop varieties with improved stress tolerance,
yield, and quality. To investigate resource redistribution from growth- to defense-related
processes in an essential tuber crop, potato, here we generate a large-scale compartmen-
talized genome-scale metabolic model (GEM), potato-GEM. Apart from a large-scale
reconstruction of primary metabolism, the model includes the full known potato sec-
ondary metabolism, spanning over 566 reactions that facilitate the biosynthesis of 182
distinct potato secondary metabolites. Constraint-based modeling identifies that the
activation of the largest amount of secondary (defense) pathways occurs at a decrease
of the relative growth rate of potato leaf, due to the costs incurred by defense. We then
obtain transcriptomics data from experiments exposing potato leaves to two biotic
stress scenarios, a herbivore and a viral pathogen, and apply them as constraints to
produce condition-specific models. We show that these models recapitulate experimen-
tally observed decreases in relative growth rates under treatment as well as changes in
metabolite levels between treatments, enabling us to pinpoint the metabolic rewiring
underlying growth—defense trade-offs. Potato-GEM thus presents a useful resource to
study and broaden our understanding of potato and general plant defense responses
under stress conditions.

systems biology | constraint-based metabolic modeling | growth-defence trade-offs |
secondary metabolism

The challenge of ensuring a secure supply of food for the rising global population is linked
to improving not just the yield and quality but also the stress tolerance of major crops (1,
2). Environmental stresses lead to annual losses amounting to billions of euros per crop.
Apart from the detrimental effects of abiotic stresses, such as temperature changes,
droughts, and floods, biotic stresses lead to yearly losses of up to 80% of crop yield (3-5).
In the case of potato, especially damaging are viral infections and herbivore infestations,
including Potato virus Y (PVY) (6) and Colorado potato beetle (CPB) (7, 8), respectively.
Despite these concerns, the molecular processes underpinning and associating crop yield
and defense responses are still not well understood (9, 10). Plants attacked by biotic
stressors slow down their growth to preserve molecular resources and direct them for
defense purposes, including production of signaling as well as defense compounds (9).
Conversely, rapid plant growth to improve accessibility of resources (e.g., when seeking
light during germination or due to a crowded environment) is often accompanied by
increased susceptibility to pests and pathogens, as growth is prioritized over defense (11).
This growth—defense trade-off is a fundamental principle of plant economics, allowing
plants to balance growth and defense according to external conditions (9, 10). However,
modern agricultural crops, including potato, have been bred to maximize yield- and
growth-related traits at the expense of losing useful defense-related traits (12). To this end,
improved understanding of the molecular mechanisms behind growth—defense trade-offs
is a crucial step toward enhancing breeding strategies that could help design superior
crops, combining high yields with the ability to defend against stress (1, 13).

Plant defense responses are often systemic in that they have an effect beyond the infected
or damaged tissue (14). They are mediated by complex signaling and regulatory networks
which sense and respond to environmental perturbations (15, 16). Hormones, like salicylic
acid and jasmonic acid, induce plant resistance mechanisms to either biotrophic pathogens,
such as PVY (17, 18), or herbivores, such as CPB (7), respectively. Trade-offs between
plant growth and defense typically occur within cellular metabolism, which comprises a
complex network of biochemical reactions that synthesize and transform substances into
energy and base components necessary for the various cellular tasks (19, 20). Here, plant
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growth is mediated by primary, biomass-producing processes that
include photosynthesis, respiration, and the synthesis and degra-
dation of carbohydrates, amino acids, and nucleic acids (21),
whereas secondary metabolism facilitates the production of a
plethora of signaling and defense compounds (so-called specialized
metabolites) (22, 23). Lipid metabolism is also a critical subsystem
interlinking the growth and defense processes (24), by providing
precursors for many molecules in secondary metabolism and sig-
naling pathways.

Growth—defense trade-offs have been studied using classical
reverse genetics approaches in Solanaceae (25-27). For instance,
overexpression of potato 3-hydroxy-3-methylglutaryl-CoA reduc-
tase homologs resulted in dwarfism and highest amounts of sterols
(28), and oxylipin-induced growth—defense trade-offs were shown
in several plant species, including Arabidopsis, tomato, tobacco,
and rice (29-31). Simulations of plant growth and development
provide another way to study growth—defense trade-offs in specific
genotypes and under particular environments, for instance using
constraint-based mathematical modeling approaches based on
genome-scale metabolic models (GEMs) (32-34). However, in
silico analysis of trade-offs requires models that include processes
underpinning growth and defense mechanisms, by integrating
pathways from primary, secondary, and lipid metabolism.
Moreover, there is presently a gap in representing and using the
existing knowledge of plant secondary metabolic pathways, as
models incorporating secondary pathways [e.g., in rice (35) or
Arabidopsis thaliana (36)] do not systematically dissect and quan-
tify growth—defense trade-offs. Existing studies of plant metabolic
flux trade-offs using constraint-based modeling have been based
merely on models of primary metabolism [e.g., A. thaliana (37,
38) and condensed representation of metabolism of diverse fruits
(39)]. Therefore, to correctly interpret experimental data and study
the effects of plant biotic interactions at the molecular level, it is
imperative to refine and expand existing metabolic modeling
resources to encompass not only the primary but also the full
secondary metabolism in an essential food crop system, such
as potato.

Here, we present potato-GEM, a metabolic reconstruction of
potato leaf metabolism that spans not only all critical primary and
lipid metabolic processes, but also adds a full reconstruction of
the known potato secondary metabolism. We then perform a gen-
eral analysis of how secondary metabolite production is linked to
plant growth, determining the ability of the model to capture and
quantify growth—defense trade-offs and to predict how resource
limitation affects these trade-offs. We further process and analyze
transcriptomic data from biotic stress experiments on potato
leaves, capturing both insect pests (chewing herbivore, CPB) and
pathogens (intracellular virus, PVY) interaction characteristics.
To connect the enzyme-catalyzed reactions of potato-GEM with
the underlying genes, we use the transcriptomic data to constrain
reaction upper bounds and build a set of condition-specific mod-
els. We find that these models indeed reflect experimental obser-
vations of decreased growth under stress conditions and also result
in predicted metabolite flux-sums, as proxies of metabolite levels,
that match measured relative metabolite levels between control
and treated plants. Finally, we perform an in-depth analysis of the
condition-specific models using Monte Carlo sampling and path-
way enrichment analysis, obtaining further insights into the met-
abolic rewiring underpinning potato growth—defense trade-offs.
Our study thus demonstrates the usefulness of secondary
metabolism-expanded models, such as potato-GEM, in the con-
text of constraint-based modeling approaches, to help expand our
knowledge and understanding of the molecular principles behind
plant stress responses and environmental interactions.

https://doi.org/10.1073/pnas.2502160122

1. Results

1.1. Constructing Potato-GEM by Merging and Curating Multiple
Metabolic Modules. To ensure an accurate reconstruction of
potato metabolism, we followed a bottom—up approach that
avoids issues with gap-filling due to the poor experimentally
validated annotation in potato (2.1% of all protein-coding
genes). To this end, we first merged the metabolic model of A.
thaliana core metabolism (AraCore, spanning 549 reactions and
407 metabolites) (32) and the single-tissue model of tomato
metabolism, recently updated and expanded in the Virtual Young
TOmato Plant (VYTODR, spanning 2,261 reactions and 2,097
metabolites) (33) (SI Appendix, Supplementary Methods M1).
The rationale for initiating potato-GEM from these models is
that tomato is a genetically and metabolically closely related plant
from the Solanaceae family (40). Moreover, the Arabidopsis core
metabolism constitutes the set of functionally conserved metabolic
pathways across the dicot species (32). During the merging process,
we identified an overlap of 298 reactions and 346 metabolites
common to both models (Fig. 14). However, the resulting model
did not contain a functional secondary metabolism nor was it
able to produce necessary lipid-related precursors. To resolve this
issue, we further integrated the model with the recently developed
Plant Lipid Module (24), identifying an overlap of 279 reactions
and 403 metabolites present in the lipid module and the merged
AraCore-VYTOP model (Fig. 14). Moreover, we curated 363
reactions from 106 pathways belonging to potato secondary
metabolism and 23 related precursor pathways from the MetaCyc-
derived Plant Metabolic Network database (41, 42), adding an
additional 203 reactions. This resulted in the potato-GEM model
spanning 7,092 reactions and 3,801 metabolites (Fig. 1.4), across
16 unique compartments (Fig. 1B: only key compartments are
shown since the majority are related to the Plant Lipid Module,
Supp. files S1, §2). Compared with the tomato GEM in VYTOPR,
the number of blocked reactions (i.e., those unable to transport
any flux) was reduced over 50-fold (Fig. 1C: ratio of blocked
reactions 51.4% with VYTOP and 0.9% with potato-GEM),
demonstrating the relevance of the bottom—up, well-curated
reconstruction procedure.

We next defined a leaf biomass growth reaction to use with
potato-GEM metabolic simulations (S/ Appendix, Supplementary
Methods M2). Here, we measured the dry weight to fresh weight
ratio as well as the total protein content of potato leaves
(ST Appendix, Supplementary Methods M3). Additionally, quan-
titative data for various biomass components, including sugars,
organic acids, amino acids, and lipids, were compiled through
an extensive review of the literature (24, 33, 45-51). The leaf
biomass thus comprised 67 compounds and an additional 122
lipid-related compounds (Fig. 1D and S/ Appendix, Table S1,
Supp. file S3). To ensure comparability of predicted growth rates,
the component values were further calibrated to a total of
1 g/gDW (44). This was achieved by proportionally increasing
their quantities and setting the overall quantity of nucleic acids,
for which experimental data were not available, similar to that
of proteins (Fig. 1D: 14.5% of DW) (33). We then verified that
potato-GEM is indeed capable of producing all 189 biomass
components under standard phototrophic (light) conditions
(ST Appendix, Fig. S1.1 and  Supplementary Methods M4).
Moreover, compared with the existing AraCore and VYTOP
models, potato-GEM includes a larger number of biomass pre-
cursors across multiple component classes (Fig. 1E: producing
in total 71.8% or 11.7% more biomass precursors if lipids are
disregarded, respectively). This supports the model’s secondary
metabolite-producing functionality.

pnas.org
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Constructing potato-GEM by merging and curating multiple modules. (4) Venn diagram of the four models that comprise potato-GEM, including AraCore

(32), the basic single-tissue model from VYTOP (33), Plant Lipid Module (24) and additional manual curation of secondary metabolism based on the MetaCyc
database (42, 43). (B) Number of core, lipid, and other primary as well as secondary metabolism reactions across the model's key cellular compartments including
multicompartment reactions. /nset shows the total number of reactions. (C) Depiction of the total number and blocked reactions across the MetaCyc pathway
ontology. Inset pie charts show the ratio of blocked reactions in VYTOP and potato-GEM. Lower Inset shows a zoom in on the values of the bottom 17 pathways.
(D) Depiction of potato biomass components based on experimentally measured values and after adjustment of total content to 1 g/gDW (44). (F) Quantification
of the capability to produce biomass precursors across potato-GEM and the existing VYTOP (33) and AraCore (32) models.

Importantly, the reconstruction of secondary metabolism in
potato-GEM captures the complete Solanum tuberosum secondary
metabolism as detailed in the Plant Metabolic Network database
(41, 42) (SI Appendix, Supplementary Methods M1). It covers the
major classes including: i) alkaloids, such as alpha-solanine and
alpha-chaconine, calystegines, and tropane alkaloids, ii) phenyl-
propanoid derivatives, such as flavonoids, coumarins, cinnamates,
lignans, and lignins, iii) terpenoids, i.e., carotenoids and mono-,
di-, tri-, and sesquiterpenoids, iv) phytoalexins, i.e., resveratrol
and capsidiol, and v) hormones, including jasmonic acid, salicylic
acid, abscisic acid, auxins, brassinosteroids, cytokinins, ethylene,
and gibberellins (Fig. 24 and SI Appendix, Fig. S1.2). The inclu-
sion of these pathways enables the modeling of the production of
defense compounds related to stress response (e.g., hormones),
allowing us to study the effects and coupling of growth with sec-
ondary metabolite production (19, 52). The complete secondary
metabolism spans over 566 reactions in 106 pathways, producing
a total of 182 unique secondary metabolites (S/Appendix,
Figs. S1.2 and S1.3 and Table S2, Supp. file $4).

1.2. Secondary Metabolism Reconstruction Enables Quantifying
Growth-Defense Trade-Offs. The refined potato-GEM model
enabled us to investigate the coupling (53) between potato
growth and stress response modes and to ascertain the possibility
of growth—defense trade-offs. To this end, we investigated whether
fluxes through secondary pathways and reactions are coupled to
biomass production (growth, Fig. 2B). Here, the variability of
fluxes of the final product-producing reactions in each secondary
pathway were evaluated within the optimal biomass space using
flux variability analysis (FVA) (54). Different fractions, ranging
from 0 to 1, of the optimal relative growth rate were used (Fig. 2C).
We observed that at the optimal relative growth rate, the majority
(88%) of secondary pathways were either inactive, with computed
flux ranges of 0 pmol/ gD\Wh , or minimally active, with a limited
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flux range below 0.29 pmol/gDWh™', occurring for 31 reactions
(Fig. 2 Cand D). Furthermore, with a decreasing relative growth
rate from the optimum, the majority (>97%) of secondary pathways
exhibited proportional increases of their flux ranges (Fig. 2C). This
was supported by a s%mﬁcant negative correlation (Spearman
p=-0.71, P-value < 107", S] Appendix, Fig. S2.1) between growth
and flux through secondary metabolite production. The results
demonstrated that the majority of secondary pathways are thus
negatively coupled with the plants’ growth objective (Fig. 2D:
194 reactions across 103 pathways). In addition, for 99% of these
negatively coupled pathways, the predicted flux upper bounds were
found to be strongly negatively correlated (Spearman p < -1.0,

P-value < 1071, S7 Appendix, Fig. S2.2) with the relative growth
rate. The remaining pathways exhibited either nonmonotonic
changes (PWY-5751: phenylethanol biosynthesis, one reaction),
or were inactive across the whole range of biomass production (two
reactions from two pathways, S/ Appendix, Fig. S2.3). Importantly,
an optimal secondary metabolite production was observed at a
fraction of 0.6 of the optimal relative growth rate, where the largest
amount of secondary reactions and pathways were found to be
active (Fig. 2D: 99% and 98%, respectively).

The observed negative coupling between growth and secondary
metabolism (Fig. 2C) suggested that a growth—defense trade-off
is occurring with these pathways. Therefore, to identify secondary
metabolites that most affect the biomass objective function, we
further computed shadow prices for demand reactions producing
a secondary metabolite of interest (55) (S Appendix, Supplementary
Methods M4). These demonstrate how much a unit increase of
flux through secondary pathway (defense) production decreases
the flux through the biomass reaction (growth), which can be
interpreted as a growth—defense trade-off factor (Fig. 2B). We also
implemented and applied a procedure to determine the energetic
cost of secondary metabolites (S Appendix, Supplementary Methods
M4). In line with expectations, we found that the shadow prices
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Fig. 2. Secondary metabolism reconstruction enables quantifying growth-defense trade-offs. (A) The number of reactions, pathways, and products across
secondary metabolism classes in the reconstruction. (B) Schematic depiction of the studied growth-defense trade-off relationships by either observing the effects
of growth limitation on defense activation (as depicted in panels C and D) or vice versa (panels E and F). (C) Depiction of predicted growth-defense trade-off
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The red line denotes median value across the whole secondary metabolism.

were significantly and strongly correlated (Spearman p = 0.99,
P-value < 107') with computed costs of metabolite production
as well as with metabolite molecular weights (Spearman p = 0.75,
P-value < 1076, 57 Appendix, Fig. S2.4), demonstrating the valid-
ity of the model. On average, across all coupled secondary path-
ways, we observed a 3.9 x 107 decrease of biomass flux with a
unit increase of secondary metabolite production (Fig. 2E).
Moreover, we found that this growth—defense trade-off factor
remains on average relatively equal across different secondary
metabolite classes (Fig. 2F). The exception was with alkaloids,
exhibiting the largest trade-off factor of 7.1 x 107, This was almost
twofold and significantly (Wilcoxon rank-sum test P-value =
0.002) larger than with the remaining secondary metabolism
classes, likely due to the large costs of their synthesis (56).
Compared to primary metabolism, the growth—defense trade-off
factor of secondary metabolites was almost twofold and signifi-
cantly (Wilcoxon rank-sum test P-value = 1.3 x 1071 higher than
shadow prices obtained with cytosolic primary metabolites
(Fig. 2E: ~107). Average shadow prices for demand reactions of
primary metabolites in the chloroplast were however relatively
similar to those of secondary metabolites (Fig. 2E: 3.4 x 1074,
and further increased across the remaining compartments due to
specialized metabolism, such as highly costly lipid production
(57). Considering the distribution of core metabolism mostly
among the cytosol and chloroplast (Fig. 1B: ~78% of reactions),
the results suggest that defense activation under stress requires a
relatively higher amount of resources (Fig. 2E: up to twofold
more) than the general rewiring of core metabolism.

1.3. Exploring the Effects of Resource Limitation on Growth and
Defense. We next explored the possibility that resource constraint
is a primary reason for the inverse growth—defense relationship,
whereby providing more resources would reduce growth—defense
trade-offs and allow plants to simultaneously grow and defend
themselves (10, 58). To this end, we proportionally limited or

https://doi.org/10.1073/pnas.2502160122

increased the availability of key resource inputs: CO,, light,
nitrogen, or a combination of all three (Fig. 34 and SI Appendix,
Supplementary Methods M4). We observed proportional decreases
in the predicted growth rates when limiting resources, reaching no
growth when resources were completely withdrawn (Fig. 3B: note
that a resource ratio of 1 is used to denote resource consumption
at the optimal relative growth rate). Conversely, as expected,
no change in growth was observed when increasing resource
availability above a resource ratio of 1 (§/ Appendix, Fig. S3.1). The
secondary metabolite production capaci? decreased significantly
(Wilcoxon rank-sum test P-value < 107'®, measured between the
resource ratio of 1 and 0) and proportionally with varying CO,
and light availability (Fig. 3C). However, with nitrogen limitation,
the defense response increased by over twofold for a nitrogen
ratio between 1 and 0 (Wilcoxon rank-sum test P-value < 0.002).
This further unlocked the model’s optimal secondary metabolite
production reached at a fraction of 0.6 of the optimal relative
growth rate within the given constraints. Increasing resource
availability, on the other hand, did not lead to an increased
secondary production capacity (SI Appendix, Fig. S3.2). The
results suggest that under actual in situ conditions, where plants
do not grow at the metabolic optimum (as depicted in Fig. 30),
access to more resources could indeed decrease growth—defense
trade-offs by allowing plants to simultaneously grow and defend
themselves (10). Moreover, the availability or limitation of certain
key resources, such as nitrogen, can also strongly affect the defense
capacity and is a point of possible improvement.

1.4. Capturing Biotic Stress Responses with Transcriptomics
Data. Our next aim was to investigate a range of common potato
biotic stress scenarios and the growth—defense trade-offs that they
elicit. To this end, we performed a transcriptomics experiment
based on the herbivore attack of potato leaves with the CPB and
complemented it with previously published data on the pathogen
interaction with the PVY (6) (Fig. 44). Briefly, plants were exposed
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Fig. 3. Exploring the effects of resource limitation on growth and defense. (A) Schematic depiction of the analysis of resource limitation or expansion, where
the key resources CO,, light, and nitrogen were varied within a range of 0 to 1 relative to the resource consumption flux obtained at an optimal growth rate of 1.

(B) Effect of resource limitation on the predicted relative growth rate (biomass optimum). (C) Effect of resource limitation on the range of secondary metabolite
production (defense), computed at the fraction of 0.6 of the optimal relative growth rate to observe the largest amount of possible active secondary metabolism.

to two beetles per leaf for 30 min, and 24 h post infection the
leaf region surrounding the damaged part was sampled in parallel
with noninfested leaves (control) and processed for RNA-Seq
(SI Appendix, Supplementary Methods M3 and M54). In the
previously published PVY experiment (18), leaves were inoculated
with PVY and tissue immediately surrounding the site of viral
multiplication was sampled when the hypersensitive resistance
response was fully established (4 d after inoculation). This was
performed in parallel with control noninoculated leaves tissue,
and all tissues were then processed for RNA-Seq (87 Appendix,
Supplementary Methods M5). Biological triplicates were analyzed
per treatment, resulting in a total of 12 samples.

Nonmetric multidimensional scaling analysis of transcript
counts indicated clear separation among treated and control sam-
ples in both experiments (Fig. 4B and SI Appendix, Fig. S4.1 and
Supplementary Methods M5). We also observed significant corre-
lation (Spearman p = 0.77, P-value < 107'°) of transcript counts
among the control samples of both experiments (S Appendix,
Fig. $4.2). While correlation analysis among all 12 samples
showed a clear distinction between PVY control and treatment
samples, this was not observed with CPB samples (Fig. 4C). The
CPB experiment also captured a smaller number of differentially
expressed genes (325 DEGs), compared to the PVY experiment
(9,289 DEGs) (Fig. 4D, Supp. file S5). These differences were
likely due to the shorter CPB exposure time and thus milder
observed defense response than with PVY (18). Nevertheless, fur-
ther DEG and enrichment analysis using plant specific MapMan
ontology terms (59) showed i) an increase in hormonal produc-
tion, specifically salicylic acid with PVY (17) and jasmonic acid
with CPB (8, 62), which are known signaling cascade regulators
of the specific biotic stresses, ii) general upregulation of multiple
secondary pathways, including those belonging to glycoalkaloid
(63), phenylpropanoid (64, 65) and terpenoid classes (66), iii)
lowered photosynthetic activity with PVY (67), iv) upregulated
sucrose degradation factors with PVY likely due to increased
sucrose accumulation (65), as well as v) downregulation of biotic
stress response-related factors due to an overactivated signaling
response (Fig. 4F, Supp. file S6) (16). This suggested that known
responses as a consequence of biotic stress and growth—defense
trade-offs were indeed captured in both experiments (18).

1.5. Transcriptome-Constrained Models Recapitulate Reduced
Growth in Stress Response. To further study the characteristics
of biotic interactions, we next constructed models constrained by
the transcriptomics data (Fig. 54). To this end, we first annotated
model reactions with gene protein reaction (GPR) associations,
which were obtained from the MetaCyc-derived Plant Metabolic
Network database (41) (S. mberosum subset) as well as by
translating GPRs with Arabidopsis gene identifiers from the Plant
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Lipid Module (24) and AraCore (32) modules (S Appendix,
Supplementary Methods M6). Here, orthologous genes between
Arabidopsis and potato were identified according to Plaza v5.0 (68)
orthologs using clustering algorithms as well as BLAST reciprocal
best hit search (69, 70). This yielded a set of 2,173 potato gene
identifiers and resulted in 3,474 reactions (49%) annotated
with GPR associations comprising, on average, two unique gene
identifiers (Fig. 5B and S/ Appendix, Fig. S5.1 and Table S3). As
expected, better coverage of GPR-annotated reactions of 64% was
achieved with the core metabolism compared to a ~50% coverage
of both the lipid and secondary metabolism (Fig. 5 B, Inser).
However, secondary metabolism reactions were annotated with
GPR associations that comprised significantly more unique gene
identifiers than those in pr[mary metabolism (Wilcoxon rank-
sum test P-value < 3 x 107"%), with a 1.5-fold higher number of
genes on average (Fig. 5C). Within secondary metabolism, apart
from precursors exhibiting the highest coverage (85%), terpenoid,
toxin, and phenylpropanoid derivative classes achieved a better
than average coverage of 49% or higher (Fig. 5D).

Next, we integrated the transcriptomics data with the
potato-GEM model, by evaluating GPR associations based on the
provided transcriptomic measurements to constrain the models
upper bounds of flux across reactions (S Appendix, Supplementary
Methods M5). This resulted in 12 transcriptomics-constrained
models, one for each replicate of the data treatment (control and
treated) and experiment type (CPB and PVY; see Fig. 4). An initial
14,404 and 19,367 transcripts from the CPB or PVY experiment,
respectively, were mapped to GPR associations across 3,140 and
3,207 reactions, respectively (S Appendix, Fig. S5.2). Compared
to the overall proportion of essential reactions in the model of
6.2% (439), without which the model cannot produce the target
blomass (71), a significantly (Fisher’s exact test P-value = 1.1 x
10™*) larger proportion of ~8.6% were found to be GPR-annotated
(SI Appendix, Fig. S5.1: 267 and 277, respectively). We observed
that the variability of the upper bounds of the CPB dataset con-
strained models differed significantly (Wilcoxon rank-sum test
P-value < 107') across treatments (S/ Appendix, Fig. S5.3). Here,
models corresponding to treated samples exhibited an average
2.5-fold increase in variability of upper bounds compared to con-
trols. However, this was not the case with the PVY dataset, where
the variability remained approximately equal between treated and
control models. Moreover, the transcriptomics-constrained reac-
tions were found to comprise the full range of pathways covering
96% of the key cellular processes as existing in the original uncon-
strained model (Fig. 1C and S/ Appendix, Fig. S5.4).

Finally, we observed that under both biotic stress scenarios, the
predicted relative growth rates (SIAppendix, Supplementary
Methods M4: phototrophic regime as applied in the experimental
setup) with the constrained models of treated plants were on
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Fig. 4. Capturing biotic stress responses with transcriptomics. (4) Schematic depiction of biotic stress transcriptomics experiments with CPB and PVY. (B) Principal-
coordinate analysis of Bray-Curtis dissimilarity between transcript counts across experiments and treatments. (C) Heatmap and dendrogram visualization of
hierarchical clustering on Bray-Curtis dissimilarity between sample replicates across experiments and treatments. (D) Ratio of differentially expressed genes
(DEGS) (BH-corrected P-value < 0.05 and abs(log2FC) > 2) belonging to a MapMan (59, 60) category vs. the total number of DEGs across experiments. Ratios
above 0.025 shown. (E) Transcriptomics responses on the level of pathways. MapMan-defined pathways (59, 60) enriched with differentially regulated genes

were calculated using Gene Set Enrichment Analysis (61) (BH-corrected P-value < 0.05).

average 75% lower than that of controls (Fig. 5E). Here, 39.6%
of the optimal growth rate was observed with CPB and 9.8% with
PVY, respectively. This is in line with experimental findings, where
growth rates under biotic stress treatments have generally been
found to be lower compared to controls (72, 73). To further

validate model predictions, we applied randomized Monte Carlo
sampling using the Artificial centered hit and run algorithm (74)
(SI Appendix, Supplementary Methods M4). We ensured that
growth—defense trade-offs were accurately captured in the sam-
pling procedure by using appropriately set reaction bounds. These

6 of 11

A B C

102
2nd met. a 8 o — Avg.
i 103 core o
Revise lipid 88 2
gene-protein- other 2% g 3 8
. - Qo
reaction rules v 102 0?2
M £ 10 00 05 5T 1014
| GE 3 Ratio of GPR ¥ g
CPB/PVY © annotated react. g ‘é
3
: : . 10! =
M + i 9ené :__ GE-constrained 58
: expression : condition- E}
N . =2
data :  gpecific models 10° 1079 — . : .
0 20 40 60 80 100 2nd met. core lipid other
Num. gene ids per GPR-annotated reaction
ﬂJ
D E et F = r = 0.483, p-value < 0.004
Q
alkaloids —— Median — 2.0 I control §§ —— fitted line °
Z‘ 3 treated EE
hormones = ) s 5
other 5157 g5 3
° o ;' °
o 3378
phenylpropanoid 2 & & 04
derivatives @ 1.01 553
k] o=5
precursors 5 ug’sg § l°
505 58 7
terpenoids = S8 . ° .
: [ T e ° o
toxins 0.0 o g -10- °
I T T T T T T o C T T T T
0.0 0.2 0.4 0.6 0.8 CPB PVY E’ 8 -2 -1 0 1
Ratio of 2nd met. reactions annotated Experiment Log2 fold change of exp. measured metabolite
with GPRs concentrations in PVY-treatment and

control settings

Fig. 5. Transcriptome-constrained models recapitulate reduced growth in stress response. (A) Schematic depiction of the procedure to construct a set of
CPB- and PVY-transcriptome constrained models. (B) Number of gene identifiers present in GPR associations across GPR-annotated reactions. The red line
denotes an average value of 2. Inset depicts the ratio of GPR-annotated reactions across the general metabolic types. (C) Number of gene identifiers presentin
GPR associations of GPR-annotated reactions across the general metabolic types. The red line denotes the average value. (D) Ratio of GPR-annotated reactions
across secondary metabolism classes. The red line denotes the average value. (E) Predicted biomass production with the transcriptome constrained models
under a phototrophic regime. (F) Validation of model performance: Correlation analysis of predicted metabolite flux-sums (as proxies for metabolite levels)
from randomized sampling results using PVY transcriptomics-constrained models and published relative metabolite levels from metabolomics experiments
upon potato PVY infection (65).

https://doi.org/10.1073/pnas.2502160122 pnas.org


http://www.pnas.org/lookup/doi/10.1073/pnas.2502160122#supplementary-materials

Downloaded from https://www.pnas.org by 5.44.34.139 on August 14, 2025 from |P address 5.44.34.139.

were obtained from FVA performed over a range of fractions of
the biomass optimum, between optimal secondary metabolism
production (at the fraction of 0.6 of the optimal relative growth
rate) and optimal biomass production (fraction of 1; see Fig. 2C).
Additionally, we considered that trade-offs are related to known
hormone responses and mediated by extensive signaling cascades
(15) that are not the part of the present metabolic model. We thus
imposed that the models of nonstressed control conditions pro-
duce no jasmonic acid with CPB and no salicylic acid with PVY,
respectively, based on experimental and published observations
(8, 17, 62). Comparing the flux sampling results and published
potato metabolomics data 3 d post PVY infection (65), we found
a significant correlation (Spearman p = 0.48, P-value < 0.004)
between log-transformed measured relative metabolite levels and
predicted metabolite flux-sums (as proxies for metabolite levels)
(75, 76) between treatment and control for 33 key metabolites
present in the models (Fig. 5F and SIAppendix, Table S4).
Therefore, our results indicated that the transcriptomics-constrained
models result in predictions that are well supported by experiments
(36, 77), supporting the usefulness of these models to further
study biotic stress-induced growth—defense trade-offs in the con-
text of metabolism.

1.6. Exploring the Mechanisms of Growth-Defense Trade-
Offs under Biotic Stress. We next set out to perform a large-
scale treatment-specific analysis of metabolism to obtain a global
picture of metabolic responses under biotic stress. To this end,
we used the randomized Monte Carlo sampling results described
above (Fig. 64 and SI Appendix, Supplementary Methods M4).
We performed differential flux analysis to identify reactions that
exhibited significant (Kolmogorov—Smirnov test BH-corrected /-
value < 0.05) and over twofold differences in flux values between
treatment and control conditions, on average (SI Appendix,
Supplementary Methods M7, note that replicates were pooled for
these computations). In relation to the fold-change cutoff used,
which varied from 2 to 10, the analysis revealed between 2,343
and 644 (33% and 9%) differential reactions with CPB, and
between 3,402 and 1,751 with PVY (48% and 25%), respectively
(Fig. 6B and SI Appendix, Fig. $6.1). With both experiments,
the fluxes of differential reactions were on average 90% lower in
treatment models compared to control ones, which was likely
due to a higher number of downregulated reactions compared
to up-regulated ones observed with both experiments (Fig. 65).
This was especially prominent with PVY, where the number of
downregulated reactions was fourfold higher. Despite this, fluxes
across secondary metabolism increased by ~1.5-fold between
treatment and control models in both experiments (S Appendix,
Fig. $6.2 and Table S5).

To determine the pathways comprising the reactions exhibiting
differential fluxes across conditions, we next performed enrich-
ment analysis of metabolic subsystems at the level of Biocyc ontol-
ogies (Fig. 6 C-E and SI Appendix, Fig. S6.3 and Tables S5 and
S6). We found that CPB models were significantly (Fisher’s exact
test BH-corrected P-value < 0.05) enriched in 21 BioCyc path-
ways, whereas PVY models spanned 28 pathways (Fig. 6 D and
E). In both experiments, multiple secondary metabolism pathways
displayed differential fluxes (Fig. 6C: a total of 14 secondary and
3 precursor pathways with CPB, and 15 secondary and 5 precursor
pathways with PVY, respectively), with a ~twofold higher number
of upregulated secondary pathways than downregulated ones.
Interestingly, we observed that different secondary pathways were
differentially regulated under the different biotic stresses (Fig. 6D).
For instance, viral infection caused the induction of hormonal
pathways, including salicylic acid and cis-zeatin, as well as multiple
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terpenoids, phenylpropanoids, and alkaloids. Insect feeding also
led to the increased synthesis of multiple stress-responsive hor-
mones, including jasmonic acid, trans-zeatin and abscisic acid, as
well as increased terpenoid production. Indeed, besides salicylic
and jasmonic acid, cytokinins are also known to be involved in
plant stress responses, besides their main role in development (78,
79). With both biotic stresses, terpenoid precursors were induced
in line with the observed terpenoid production, known to protect
plants from both viral infections and herbivores by inducing indi-
rect defenses and priming neighboring plants (80). On the other
hand, specific growth-promoting hormones were observed to be
downregulated  (Fig. 6D:  brassinolides and gibberellins).
Interestingly, apart from downregulation of certain resource-related
primary metabolic pathways, energy-related metabolism was
induced in PVY models (Fig. 6E).

Next, we analyzed the correlation between the sampled fluxes
of the enriched secondary and primary pathways under the biotic
stress conditions. Fluxes were summed over the respective reac-
tions per pathway to obtain the total pathway flux per
experiment-treatment combination (S Appendix, Supplementary
Methods M7). Indeed, significant correlations (|Spearman p| >
0.11, P-value < 3.6 x 10~*) were found among almost all pathways
(Fig. 6 F and G: secondary vs. primary metabolism pathways
shown depicting growth—defense trade-offs). We further observed
that specific groups of pathways demonstrated similar growth—
defense trade-off patterns in the context of secondary vs. primary
pathway flux correlations (SI Appendix, Figs. S6.4 and S6.5). For
instance, with the CPB models, four groups of secondary
metabolism-related pathway responses were identified using clus-
tering based on the cosine distance (Fig. 6F and S/ Appendix,
Fig. S6.4 and Supplementary Methods M7). Here, we observed a
group showinig strong negative correlation (Spearman p < -0.76,
P-value < 107™°) between fluxes in the induced stress-related hor-
mone pathways (jasmonic and salicylic acid) as well as terpenoids
and their precursors, and the downregulated primary pathways
(SI Appendix, Table S7). Similarly, four distinct groups were
observed with PVY (Fig. 6G and ST Appendix, Fig. S6.5), showin()g
strong positive correlation (Spearman p > 0.69, P-value < 107'°)
between upregulated hormonal and secondary pathways and the
induced energy metabolism, and negative correlation (Spearman
p < -0.42, P-value < 107'%) between these secondary pathways
and downregulated primary pathways (S7 Appendix, Table S8).
Conversely, the downregulated growth-related hormones were
negatively correlated (Spearman p < 072, P-value < 10™'%) with
energy metabolism and positively (Spearman p < -0.44, P-value
< 107'%) with the remaining primary pathways. This showcases
how the specific primary metabolic rewiring, which underlies sec-
ondary defense activation and production under stress conditions,
can be pinpointed, and suggests the existence of distinct groups
of metabolic trade-offs useful for further study.

2. Discussion

In the present study, we asked whether we can explain and quantify
plant growth—defense trade-offs through metabolic flux signatures
obtained by constructing and analyzing a sufficiently comprehen-
sive and accurate model of primary and secondary metabolism in
the major crop plant, potato. To this end, we developed and applied
potato-GEM, a GEM constructed by merging multiple models
(32, 33) and modules (24) (Fig. 14), and includes a reconstruction
of the full potato secondary metabolism according to the Plant
metabolic network (41) MetaCyc database (42) (Fig. 24). We
demonstrated that through its comprehensiveness and the second-
ary metabolism reconstruction, the model enables exploring the
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Fig. 6. Exploring the mechanisms of growth-defense trade-offs under biotic stress. (A) Schematic depiction of the randomized sampling procedure applied
to investigate the enrichment of metabolic subsystems among biotic stress treatment and control models. (B) Number of identified reactions with differential
fluxes at a fold-change cutoff of five (Kolmogorov-Smirnov test BH-corrected P-value < 0.05). Upregulated (up), downregulated (down), and total (all) number
of reactions depicted separately. (C) The number of significantly (Fisher's exact test BH-corrected P-value < 0.05) up- and down-regulated BioCyc pathways
according to differential reactions. (D) Heatmap of secondary metabolism BioCyc pathways significantly (Fisher's exact test BH-corrected P-value < 0.05) enriched
in differential reactions (S/ Appendix, Table S6). (E) Heatmap of primary metabolism BioCyc pathways significantly (Fisher's exact test BH-corrected P-value <
0.05) enriched in differential reactions. (F and G) Correlations between total fluxes of the enriched (Fisher's exact test BH-corrected P-value < 0.05) secondary
vs. primary pathways, demonstrating growth-defense trade-offs, with the (F) CPB and (G) PVY models. Dendrograms depicting grouping of profiles shown in
Sl Appendix, Figs. S6.4 and S6.5, Spearman correlation coefficient used (n = 1,000 samples).

principles of plant growth—defense trade-offs in the context of
metabolism and under biotic stress.

The bottom—up approach that we applied to construct
potato-GEM, leveraging existing knowledge and careful curation,
contrasts a top—down approach, where genome-wide metabolic
networks are constructed automatically from genome annotations
and reliant on gap-filling prior to further curation (71). This avoids
the need of relying on external databases or models from nonre-
lated organisms in gap-filling, as is frequently the case in modern
metabolic reconstructions, which pollute the models with reac-
tions from nonrelated organisms (81). We leveraged the informa-
tion from three state-of-the-art resources on metabolism from

higher plants, namely a AraCore (32), providing a highly curated

https://doi.org/10.1073/pnas.2502160122

model for central metabolism in the model C3 plant, A. thaliana,
VYTOP (33), providing a larger metabolic model tailored to
tomato, and the Plant Lipid Module (24), that offers the largest
and most detailed model of plant lipid metabolism (Fig. 14). All
of these models have been extensively manually curated and tested
in a number of studies. Further inspection pointed to the need
for careful manual curation of the diverse pathways of secondary
metabolism, that are only partly included in a few models dedi-
cated to these pathways (35, 36, 82). Thus, up to date, none of
the existing plant metabolic models offers a detailed inclusion of
the full complement of well-characterized pathways of hormonal
biosynthesis or secondary metabolism (Fig. 24 and S/ Appendix,
Table S2). Moreover, we showed that the number of GPR-annotated
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reactions is proportional to the model size, following the trend
defined by a variety of published plant models (S7 Appendix,
Fig. S5.1 and Table S9). The number of blocked reactions was
however the lowest among all the compared published models
(Fig. 1C and SI Appendix, Table S9). Finally, potato-GEM was
validated with experimental measurements, by i) recapitulating
stunted potato growth under stress (72, 73) (Fig. 5E), ii) recapit-
ulating relative metabolite levels under PVY infection (65)
(Fig. 5F), and iii) demonstrating correlations between computed
metabolite costs and metabolite molecular weights (S/ Appendix,
Fig. §2.5).

Similarly to growth (32, 33), plant responses to abiotic and
biotic stress comprise a large set of cellular processes (15, 16,
52). In contrast to targeted in planta experimental research that
may be limited to studying merely a subset of different molecular
responses at once (9), in silico mathematical modeling of cellular
processes such as metabolism (24, 32) and signaling (15, 16)
enables us to jointly capture and examine the full range of cel-
lular responses. The potato-GEM model thus allowed us to
observe, explore, and interpret the rewiring of plant metabolism
from growth to defense-driven responses. The analysis of growth—
defense trade-offs was performed in two ways. First, we directly
probed the model using flux balance analysis (FBA) and FVA
(54, 83) (Figs. 2 B and 3A), either by i) decreasing the relative
growth rate (fraction of biomass optimum) and observing how
defense pathways are unlocked (Fig. 2 C'and D), ii) computing
shadow prices for demand reactions producing secondary metab-
olites to determine the effects of the production of these metab-
olites on growth (Fig. 2 £ and F), or iii) testing the effect of
limiting different key input resources on the growth—defense
trade-offs (10, 58) (Fig. 3 Band C). Second, we constrained the
model according to experimental gene expression measurements
under biotic stress (18) (Fig. 4) and then analyzed model pre-
dictions by performing i) FBA (Fig. 5E), ii) metabolite flux sums
and iii) a sequential combination of FVA and randomized sam-
pling followed by differential flux analysis and pathway enrich-
ment analysis (74, 84) (Fig. 6).

As a result of the first approach, we found that the effects of
decreasing the relative growth rate (lux through the biomass reac-
tion) were significantly negatively correlated with increasing flux
through secondary pathways (Fig. 2C), enabling us to quantify
specific  general principles of growth—defense trade-offs.
Specifically, we identified that the largest number of defense-related
secondary metabolism pathways are active at a decrease of ~40%
of the potato relative growth rate (Fig. 2C: fraction of biomass
optimum of 0.6). Further, compared to primary metabolism, we
found that the secondary metabolism response involves more
costly metabolic processes, based on measuring the effect of per-
turbing secondary metabolite production (Fig. 2E: unit change
flux through secondary pathways) on growth (flux through bio-
mass reaction). The cost of diverted resources is also, on average,
approximately equal across the secondary metabolite classes
(Fig. 2F). Indeed, it is known that due to the costliness of diverting
energy and resources away from key processes, such as growth and
reproduction (85), cells employ multiple strategies to lower the
high metabolic costs of defense (23). Apart from fine-tuning sec-
ondary metabolite production via gene expression, metabolite
multifunctionality, and effective recycling (23), balancing the
objectives between biomass or defense production is a key cellular
strategy defined by the spectrum of resistance and tolerance of the
underlying plant genotype (85). Last, we found that resource lim-
itation has a profound effect on growth—defense trade-offs, effec-
tively decreasing defense rewiring due to a lack of resources
(Fig. 3C). This supports the existing resource allocation theory
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(58, 86), whereby resource constraints are a primary reason for
the inverse growth—defense relationship. Namely, since plants
typically do not optimize merely the growth objective and thus
do not necessarily grow at the metabolic optimum, they can find
themselves somewhere between the minimum and maximum
modeled growth rate (Fig. 3B: 0 to 1 relative growth rate). Thus,
providing more resources, such as increasing specific nutrients
and/or light (Fig. 3C), would reduce growth—defense trade-offs,
resulting in more secondary metabolism activation at a higher
growth rate and thus allowing plants to simultaneously grow and
defend (10). On the other hand, the availability of certain nutri-
ents might also have an opposite effect, as was found for nitrogen
(Fig. 3C), suggesting that the level of such resources needs to be
further fine-tuned with respect to the system state in the
resource-growth—defense spectrum.

To apply potato-GEM to study growth—defense trade-offs
under biotic stress, we first performed and processed transcrip-
tomics experiments exposing potato leaves to CPB (this study)
and PVY (18), respectively (Fig. 44). According to differential
gene expression and pathway enrichment analyses of the transcrip-
tomics data, both experiments captured the full expected response
of their corresponding stresses (Fig. 4 D and E), despite the CPB
experiment characterizing a more early stage of the stress response
than was the case with PVY (18). By revising the potato-GEM
gene-protein-reaction (GPR) associations that link gene expression
and reactions (Fig. 5 A and B), we constrained reaction upper
bounds according to the measured gene expression levels (87, 88).
This resulted in a set of condition-specific models, which, when
predicting optimal growth rates using FBA, predicted decreased
growth under biotic stress compared to controls (Fig. 5F), in
accordance with published experimental observations. For
instance, in a study measuring the effect of CPB damage on potato
growth rates in different plant growth stages, damage during both
the vegetative and tuber-bulking phases led to decreased haulm
and tuber growth rates (73). Similarly, PVY infected plants, grown
from infected seed tubers, displayed slower growth rates and lower
tuber yields compared to plants grown from noninfected tubers
(72). Enzyme-constrained models offer an improvement over the
present approach, and allow accounting for posttranscriptional
regulation influencing metabolic fluxes beyond transcriptomics
data constraints (89). However, their usage requires integration
and availability of turnover numbers, which are presently not
available with a great coverage for potato.

Finally, we performed Monte Carlo sampling of the condition-
specific models. Using PVY infection metabolomics data (65), we
showed that the relative changes of computed metabolite
flux-sums, which served as proxies for metabolite levels, were sig-
nificantly correlated with relative measured metabolite levels
between treatment and control (Fig. 5F). By further differential
flux and pathway enrichment analysis (Fig. 64), we observed a
large and significant fraction of reactions exhibiting differential
fluxes between controls and biotic-stress treatments with both
experiments (Fig. 6 Band C). These differential flux reactions were
enriched both in primary metabolic pathways as well as those
involved in secondary metabolite and hormone production (Fig. 6
D and E), in line with previous observations (8, 90). Furthermore,
analysis of the correlations among the sampled secondary and
primary pathway flux states enabled us to directly investigate met-
abolic growth—defense trade-offs and how different defense path-
ways are activated or deactivated in accordance with specific
primary metabolic changes under biotic stress (Fig. 6 Fand G).
These concerted metabolic changes point to interesting areas of
further study as they enable the development of strategies to con-
trol or alleviate multiple growth—defense trade-offs possibly by
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perturbing primary metabolic responses. Apart from this, our
results demonstrated how metabolic modeling is a useful expan-
sion of transcriptomics analysis and a complement to the analysis
of immune signaling network responses (8, 15, 18), as it can
highlicht potentially different underlying aspects of growth—
defense mechanisms that are not clearly observable at the gene
regulatory or molecular signaling levels (91, 92).

To our knowledge, this is presently the most comprehensive
metabolic model of potato (93), the third most consumed food
crop globally. The secondary metabolism reconstruction is also
useful across the Solanaceae family, which includes staples, such
as tomato and pepper, as well as Nicotiana species (94). These
economically important plants have large amounts of published
data on biotic as well as abiotic stress and combinations thereof
available, and are close relatives of potato, meaning that they share
with it the majority of their metabolism, including secondary
metabolism (40, 41, 95, 96). Therefore, repurposing potato-GEM
to study related organisms requires merely i) adapting the second-
ary metabolism, ii) reconfiguring the biomass function and iii)
redefining gene-protein-reaction associations, by finding orthologs
from potato or Arabidopsis or obtaining them from online data-
bases. Besides repurposing potato-GEM across related species,
there are potentially multiple further avenues of future develop-
ment with this model, such as multitissue (33, 97) and multispe-
cies (98, 99) modeling. Moreover, as a further option to increase
the capacity of interpreting growth—defense trade-offs, the meta-
bolic model could be integrated with signaling and regulatory
networks, within larger multidomain modeling frameworks (91,
92). Apart from cell maintenance and growth, this would enable
capturing also the decision-making activities of the cell, such as
sensing and responding to environmental changes and regulating
metabolism through the activities and abundances of enzymes
(16, 100), likely resulting in a more complete and accurate picture
of molecular responses and trade-offs. In regard to agriculture and
biotechnology, the model has potential broad applications for crop
breeding and metabolic engineering (101, 102). Here, more
advanced and complete models enable a larger potential for design
of intervention strategies. For instance, as demonstrated by the
present analysis of growth—defense and resource trade-offs, the
model could be used to optimize resource allocation to develop
stress-resistant crop varieties. The underlying aim would be to
identify and program plants to simultaneously grow and defend
(9, 10), optimizing both functions in terms of specificity and
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resource consumption, by i) producing only the required defense
compounds under certain conditions, ii) optimizing growth by
preventing certain resources required for growth to be reallocated
to defense, iii) optimizing defense production by identifying and
diverting different resources will less impact on growth that could
be used for production of the important defense compounds, iv)
identifying external conditions or nutrient/resource perturbations
that would positively impact growth or defense or their trade-offs,
toward stress resistance. Therefore, potato-GEM represents a
highly useful resource to study and broaden our understanding of
potato as well as general plant defense responses under different
types of biotic and abiotic stress.

3. Methods

Metabolic model construction, leaf biomass composition, constraint-based mode-
ling procedures, experimental procedures, transcriptomics data analysis, revision
of gene-protein-reaction associations, statistical data analysis, and software usage
are detailed in the supplement (S/ Appendix, Supplementary Methods M1-M8).
The model and related files, including Supp. files S1-S6, as well as source code
and data to reproduce the results were deposited to the Github repository at
https://github.com/NIB-SI/Potato-GEM.

Data, Materials, and Software Availability. Metabolic model and annotations
and transcriptomics data have been deposited in GitHub (https://github.com/
NIB-SI/Potato-GEM). All other data are included in the article and/or S/ Appendix.
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