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Rapid and automated identification of blight disease in potato will help farmers to apply timely remedies to protect their produce.
Manual detection of blight disease can be cumbersome and may require trained experts. To overcome these issues, we present an
automated system using the Mask Region-based convolutional neural network (Mask R-CNN) architecture, with residual network
as the backbone network for detecting blight disease patches on potato leaves in field conditions. The approach uses transfer
learning, which can generate good results even with small datasets. The model was trained on a dataset of 1423 images of potato
leaves obtained from fields in different geographical locations and at different times of the day. The images were manually
annotated to create over 6200 labeled patches covering diseased and healthy portions of the leaf. The Mask R-CNN model was
able to correctly differentiate between the diseased patch on the potato leaf and the similar-looking background soil patches,
which can confound the outcome of binary classification. To improve the detection performance, the original RGB dataset was
then converted to HSL, HSV, LAB, XYZ, and YCrCb color spaces. A separate model was created for each color space and tested
on 417 field-based test images. This yielded 81.4% mean average precision on the LAB model and 56.9% mean average recall on
the HSL model, slightly outperforming the original RGB color space model. Manual analysis of the detection performance

indicates an overall precision of 98% on leaf images in a field environment containing complex backgrounds.

1. Introduction

Early and late blight diseases are a common occurrence
across regions where potato (Solanum tuberosum L.) is culti-
vated. Blight is a common foliage disease of potato that starts
as uneven light green lesions near the tip and the margins of
the leaf and then spreads into large brown to purplish-black
necrotic patches as reported by Arora et al. [1]. Blight causes
premature defoliation and eventually incites tuber rot of
potato. As noted by Haverkort et al. [2], unchecked blight
could destroy the entire crop within a week under conducive
conditions. Thus, blight in potato could bring disastrous con-
sequences, particularly to farmers with marginal landholding
who grow potato as cash crops [3].

In most developing countries, detection and identifica-
tion of blight are performed manually by trained personnel

scouting the field and inspecting potato foliage. This process
is tedious and in some cases impractical, due to the unavail-
ability of a disease expert in remote regions [4]. On the other
hand, the recent advances in image processing for rapid and
automated disease identification using images of plant leaves
[5-7] can make the process far more efficient and timely. In
the recent past, a system has been proposed to identify the
severity of potato late blight disease from field images using
fuzzy C-means clustering [8] but with few images. Using
300 images as a training set, another work [3] has attempted
potato disease detection using segmentation and multiclass
support vector machine. These datasets do not incorporate
time-varying illumination and are usually taken at a fixed
time corresponding to the best illumination. Usually,
methods developed using small datasets do not perform
well in field environments due to the large variations in
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illumination, focus, resolution, underlying feature size, and
presence of occluding objects in the images.

More recently, the task of classification and detection in
images has been dominated by various flavors of neural net-
works (NNs), especially with the advent of deep NNs [9-14].
It has been well-accepted that deep learning models perform
quite well in image classification and detection compared to
traditional image-processing algorithms [15]. The process
of trial and error for fine-tuning traditional image processing
models to obtain the representational features of objects
becomes rapidly complicated as the number of classes
increases. On the other hand, a neural network learns
complicated underlying patterns specific to a certain class
of object without any manual intervention. A classification
model using convolutional neural network (CNN) for distin-
guishing 58 classes of healthy and diseased plant dataset was
developed by Ferentinos and Konstantinos [16]. Arsenovic
et al. [17] have improved the plant disease classification by
increasing the training dataset, which has images of leaves
in field conditions. Deep NNs have the potential to quickly
detect an object from a complex image, which makes them
suitable for smart phone applications [7]. However, the train-
ing process in deep NN is computationally expensive where
the network parameters are iteratively fine-tuned to improve
the mapping between a set of training input images and the
desired outputs [9]. Therefore, such methods have become
popular only with the concomitant advances in graphics pro-
cessing hardware.

In the context of an image comprising a potato leaf
amidst a complex background, the classification process has
a binary outcome; ie., it determines if the overall image
reflects disease or not. Detection, on the other hand, goes
one step further and demarcates the specific patch or patches
on the leaf that contain the signature of blight. Region-based
deep CNN (R-CNN) [18] is an object detection method that
is trained to propose regions by exhaustively searching the
image after it has been transformed through several convolu-
tion layers. For the purpose of object detection, architectures
like YOLO [19], SSD [20], Faster R-CNN [21], and Mask
R-CNN [22] are recent methods, with Mask R-CNNs giving
a better overall performance. For the R-CNN architectures,
the residual network with 50 layers (ResNet-50) is usually
used as a backbone. Other applications of CNN in agriculture
include Zhang et al. [23] who have used global pooling
dilated CNN for better segmentation and classification of
cucumber leaf disease, while CNN-based regression has been
used to estimate soybean leaf defoliation with the aid of real
and synthetic images [24].

The various transformations that an image undergoes as
it traverses a deep CNN can sometimes be understood by
visualizing the output of individual convolutional layers.
The output is termed as the feature map or activation map
and can be visually correlated to the input image. Each con-
volutional layer is a set of functions that applies some trans-
formation to the image, behaving as a filter. The feature map
aids in relating the learned filter with the performance of the
model and using the learned filter to improve the perfor-
mance as discussed in [25]. Lee et al. [26] have reported such
studies in plants where the different orders of venation pro-
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vide better representative features than the outline shape of
a leaf when considering the hierarchical transformation of
features from lower-level to higher-level abstraction for spe-
cies classes.

In addition to the choice of appropriate NN architectures,
preprocessing the image data can contribute towards obtain-
ing better detection or classification. For example, it has been
observed that a color spectrum provides better results than
grayscale for object detection by deep learning models [7]. A
color space or color model is a mathematical transformation
to project a set of primary colors to a different range of colors
[27]. An investigation of the influence of different color spaces
to improve the deep learning model performance has been
conducted for the traffic light detection system [28]. A com-
parative study for different color spaces using deep learning-
based automatic segmentation system has been discussed in
[29]. Disease region segmentation of paddy crop using
Mask-RCNN on different color space images is analyzed in
[30]. Robustness and accuracy of the segmentation of foliar
disease spot images using region growth and comprehensive
color features have been explored in [31].

The objective of this work is to develop a Mask R-CNN-
based model to detect the blight symptoms on an infected
potato leaf, which can eventually be deployed on a cell phone.
Mask R-CNN [22] is chosen because it utilizes a feature pyr-
amid network (FPN), allowing it to grasp semantically rele-
vant features at different resolution scales. The region
proposal network (RPN) scans the entire top-bottom path-
way of the FPN for feature maps containing required objects
and proposes regions of interest (ROI). This enables predic-
tion of relevant classes, bounding boxes, and mask for the
region or patch. These methods of Mask R-CNN force differ-
ent layers in neural network to learn features across multiple
scales, making it robust to several environmental variations
in the image. The model learns features from visual charac-
teristics such as the shape, color, texture, and venation of a
potato leaf and blight disease for different training data.

The emphasis on detection rather than classification is
because simple classification into healthy or unhealthy cate-
gories can be misleading due misclassification of soil patches
in the background as disease. To improve blight detection, we
also investigate preprocessing the data to include different
color space images. Figure 1 conveys the overview of the
method proposed in this work. We have converted the RGB
color space dataset to five other color spaces, namely, HSL,
HSV, LAB, XYZ, and YCrCb and created a separate Mask-
RCNN model for each color space. The model uses transfer
learning or stored knowledge of a pretrained Mask R-CNN
model on the Microsoft Common Objects in Context (MS
COCO) dataset [32] as the initial condition for the training
process. The performance of the networks across the differ-
ent color spaces is compared in their ability to automatically
detect infected potato leaves and disease patches in complex
field images.

2. Materials and Methods

2.1. Data Acquisition. The choice of data used for training a
CNN has a very strong impact of the effectiveness of the
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FI1GURE 2: The complex background dataset used in this study: (a) multiple disease patches on a single leaf; (b) single disease patch on a
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model in different situations. Factors such as the characteris-
tics of the imaging sensor, the imaging protocol followed,
illumination variation due to time of the day, shadows due
to nearby objects, occlusion, and complex background infor-
mation all need to be carefully considered to create a model
that can be successfully applied to field-based imaging. In
order to maximize the diversity of training data, a set of
1840 field-based images of potato leaves was acquired for
this work across different states in India by field personnel
deputed under the FarmerZone project [33].

The dataset comprises images of healthy potato leaves as
well as leaves affected by both early and late blights. As one of
the objectives was to develop a model that would be accessi-
ble to a larger group of small-scale farmers, it was determined
that the choice of imaging sensors should include low-end

cellular phones. Therefore, the potato leaf dataset contains
images of resolutions of 3072 x 4096 pixels (552 images),
3120 x 4160 pixels (922 images), and 2448 x 3264 pixels
(366 images) due to inherent differences in the sensors of
the different smart phones used for data collection.

The images are heterogeneous, having been taken from
different locations within the field at different times of the
day, typically between 11 am and 2 pm. Each image can con-
tain several leaves, soil, and weeds in the background apart
from the primary infected/healthy potato leaf. This variation
aids the generalization of the deep learning model. All images
were captured in natural light with the camera flash always
turned off and without any additional optical or digital zoom.
Sample images of healthy leaves and leaves affected with
blight are shown in Figure 2.



2.2. Data Curation. The potato leaf images obtained using
smart phones are in the RGB format, which is similar to the
human perception of the light spectrum as a combination
of the primary colors—red, green, and blue [34]. While there
is potential for improved image segmentation using other
color spaces, there is no general opinion on the best choice
of color space for image segmentation. Therefore, all the
RGB images were converted to five color spaces (HSV,
HSL, XYZ, LAB, and YCrCb) using Open Computer Vision
Library [35], creating additional 5 datasets. In the RGB data-
set, one or more blight spots on each potato leaf in the fore-
ground are manually demarcated into patches for creating
the ground-truth dataset. The process of demarcating or seg-
menting the images was carried out by three personnel, two
nonexperts under the guidance of an agricultural expert.
The ground-truth values and labels are kept the same for all
the images in different color space datasets. To reduce the
annotator’s bias and variance [36] during ground-truth
annotation, the following steps were taken:

(i) The expert first demonstrated the protocol for seg-
mentation of patches on foreground, the edges to be
considered, and how tightly the polygon should be
drawn

(ii) For 50 randomly selected images, the expert and the
nonexperts all annotated according to the prescribed
procedure. The value of Cohen’s kappa [37] found
across the three annotators was 0.92, and level of
agreement was found to be very good. Thereafter,
5825 blight patches, 1779 infected leaf patches, and
211 healthy leaf patches were created from the 1840
input images. Table 1 provides the details of the total
dataset and its annotation count. To create and vali-
date the disease detection model, the dataset of each
color space was further split into 2 sets containing
approximately 80% and 20% data, respectively

2.3. Mask R-CNN-Based Detection Model. The detailed block
diagram of Mask R-CNN used in this work is shown in
Figure 3. Mask R-CNN is an extension of Faster R-CNN
[38], with an additional forking to a prediction segmentation
mask on each Rol, in parallel with the already available
branch for classification and bounding box regression. In this
work, further tuning of the original Mask RCNN includes the
use of ResNet-50 as backbone architecture with RPN anchor
scales set to 32, 64, 128, 256, and 512 and the anchor aspect
ratios set to 1:2, 1:1, and 2:1. This follows from manual
observation of the training dataset, which shows that the var-
ious demarcated patches vary in this selected range of pixel
values and aspect ratios.

Regarding the choice of ResNet-50 as the backbone, it
may be noted that deep CNN is prone to problems like van-
ishing gradients and the curse of dimensionality [14], with an
increase in the number of layers. To avoid this degradation
problem for a deeper network, skip connections (identity
connections) or residual connections are used. The residual
connection is a “shortcut” module, whereby the weight/con-
volutional layers are skipped and the input is added through
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TaBLE 1: Description of manually annotated patches for different
features in the dataset.

Data Train Test Total
No. of images 1423 417 1840
No. of blight patches 4673 1152 5825
No. of infected leaves 1423 356 1779
No. of healthy leaves 122 89 211

an identity function before the final ReLU activation func-
tion. It is observed that during backpropagation, larger gradi-
ents are available for initial layers leading to faster learning
because of skip or residual connection. ResNet-50 has 50
layers arranged in five stages with a total of sixteen residual
blocks. In each residual block, the convolutional layer is
followed by a batch normalization layer and a ReLU activa-
tion function. The ResNet-50 model generates 256, 512,
1024, and 2048 feature maps from the second, third, fourth,
and fifth stages, respectively.

Each color space dataset is used for training a separate
Mask R-CNN detection model. In a preprocessing step, the
input images are downsampled to 1024 x 1024 pixels. For
each color space model, the mean value of each channel of
the respective color space, calculated separately from the
training dataset, is set in the configuration file of the program
[38]. Pretrained weights of the MS COCO dataset have been
used for the initial training of the model as attempts to train
from scratch did not yield significant detection even after
70™ epoch for all of the color space datasets, probably due
to the small dataset. On the other hand, the application of
transfer learning towards classification of potato leaf disease
was shown in [39, 40]. To optimize the network weights,
the stochastic gradient descent optimizer with momentum
fixed at 0.9 was used. A fixed learning rate of le-4 was set
for optimum learning. The maximum number of epochs
was set to 100, and iterations per epoch were set to 712 cor-
responding to a batch size of two images per iteration.

2.4. Computing Resources Utilized. The training and testing
of the model were performed on a CentOS 7 Linux worksta-
tion equipped with one Intel Xeon Processor CPU (96 GB
RAM), accelerated by one Nvidia GeForce GTX 1080 Ti
GPU (11GB Memory). The model is implemented in the
Keras 2.2.4 deep learning open-source framework with the
TensorFlow-GPU 1.8.0 backend using Python 3.6. The detec-
tion model on each color space took an average of 25 hours
for training.

For creating the ground-truth dataset VGG Image Anno-
tator (VIA) [41], a standalone software was used for the
manual annotation of the blight and leaf patches in the
image. It allows a rectangular- and polygonal-shaped area
to be annotated, which is useful for training Mask R-CNN.

2.5. Model Evaluation Metrics. In computer vision, standard
metrics like precision and recall are used for performance
evaluation of binary classification [42]. This is obtained from
a confusion matrix that summarizes the performance of a
classifier for a given test dataset. The four components of
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the 2 x 2 confusion matrix for any binary classifier are true
positive (TP), true negative (TN), false positive (FP), and
false negative (FN). The correct classification of an image
containing disease would count as a TP, while an incorrect
classification as a healthy image would count as a FP. The
performance of the classifier is then obtained by

TP

Recall= — — .
A TP EN

Precision = (1)

TP + FP

For the performance assessment of the object detection
model, both the correct classification and the precise location
of the disease patch in the image should be taken into
account. To do so, concepts such as intersection over union
(IoU) and the average precision (AP) were introduced in
the Pascal VOC challenge [43]. The IoU metric determines
the correctness of the patch detection by taking into account
how closely the predicted instance (PI) fits the ground-truth
instance (G). IoU is the measure of overlap between G and PI
boundaries given by

GnNPI
GUPI’

IoU(G, PI) = (2)

The IoU threshold is taken to be 0.5 as a common prac-
tice, whereby if the IoU value of detection is greater than
0.5, then the PI is considered as a TP, or else it is taken as a
FP. This is illustrated using a sample test image shown in
Figure 4, where green color masks and bounding boxes

represent the human-annotated ground truth while red color
masks and bounding boxes represent the predictions by the
detection model. For the sample image shown in Figure 4,
the confidence score and IoU for the infected leaf are 100%
and 93%, respectively.

In addition to the boundaries of the PI, the algorithm also
provides a confidence level for the PI. The AP is a metric that
incorporates the confidence level of prediction and IoU into
the calculation of precision using the area under precision-
recall curve. Mean average precision (mAP) is mean of AP
across the different categories or classes, which are detected,
and summarizes the performance of a detection model.

3. Results and Analyses

3.1. Disease Detection. The performance of the disease detec-
tion model, when tested on the ground-truth potato leaf
dataset, is calculated according to the metrics defined in Sec-
tion 2.5. A separate model is created for each color space.
Even within each color space, there are two types of Mask
R-CNN models:

(i) Two-class model: this involves the detection of only
potato blight patches, while the rest of the image is
considered as background. This kind of demarcation
is a natural first step where it is expected to detect
only blight disease patches from the input image.
However, once the model was trained over the entire
dataset, it was found that several blight patches were
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FIGURE 6: Sample RGB image: (a) human annotated foreground regions; (b) patches inferred by the 4-class HSL model.
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FIGURE 7: Sample RGB image: (a) with annotated foreground regions; (b) patches inferred by the 4-class RGB model.

not detected and that a few soil patches were misclas-
sified as blight. A sample test image from the RGB
dataset (Figure 5(a)) contains nine disease patches
spread across three different leaves. Figure 5(b)
shows that the two-class model has detected only
two disease patches out of nine clearly distinguish-
able disease patches

(ii) Four-class model: as a means to improve the perfor-

mance of the detection model, a second experiment
was performed in which the Mask R-CNN model
was trained to detect 4 classes: blight disease patches,
infected leaves, and healthy leaves, in addition to the
background (Figures 6 and 7).

For both models, the ground-truth criteria were kept
uniform for all the images. The aim of this second model
was to increase blight disease patch detection and reduce
the FP due to misclassification of soil as disease, by the inclu-
sion of a postprocessing step that checks for the intersection
of the disease patch with the leaf patch. Nevertheless, it was
seen that the performance of the four-class model was
superior to that of the two-class model even without any
additional postprocessing. The performance scores for the
2-class and the 4-class detection models are compared in
Table 2 with respect to different color spaces.

Among the two-class Mask R-CNN models for different
color spaces, LAB color space has the best mAP (80.1%)
and mAR (55.6%) values. The 4-class detection model shows
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TaBLE 2: Performance of various color spaces compared to RGB for potato disease detection.

2-class detection model
Color space

4-class detection model

Avg. inference time/image (sec)

mAP (%) mAR (%) mAP (%) mAR (%)
RGB 77.4 53.9 80.9 55.5 1.77
XYZ 77.4 54.2 70.8 52.9 1.68
HSL 78.2 55.2 81.3 56.9 1.67
HSV 75.5 53.9 75.5 55.4 1.67
LAB 80.1 55.6 81.4 56.4 1.68
YCrCb 76.1 54.3 79.1 56.4 1.70

Performance score calculated for IoU = 0.5.

TaBLE 3: Manually obtained performance metrics of the four-class Mask R-CNN model.

Color space Disease patch Infected leaf Healthy leaf Combined
TP1 TP2 FN FP TP EN FP TP FN FP P (%) R (%)

RGB 375 166 176 7 329 22 10 93 15 2 98.1 81.9
XYZ 343 191 173 1 340 11 34 52 55 1 96.3 79.5
HSL 464 159 147 5 338 13 21 83 25 2 97.5 85.0
HSV 428 149 140 7 341 10 23 68 40 1 96.9 83.8
LAB 395 175 180 2 333 18 11 91 17 1 98.6 82.2
YCrCb 394 253 101 9 336 15 30 52 56 0 96.4 85.8

a slightly improved mAP (LAB) and mAR (HSL) perfor-
mance metrics of 81.4% and 56.9%, respectively. It was
observed that HSL, LAB, and YCrCb color space models
could perform better than RGB color space model overall
and specifically for disease patch detection. Inference times
are the least for the detection model trained on HSL and
HSV color spaces. These results are in line with the latest
leaderboard on the COCO website [44], which publishes
the performance results for different models on the COCO
dataset with 91 categories. The highest mAP (IoU =0.5) is
60.6% for a model trained on the dataset of broccoli category
(closest to potato leaves).

Further investigation into the performance of different
four-class detection models by manually comparing the test
image data to the model outputs shows that the performance
of the disease detection model appears far better than the
mAP and mAR values reported in Table 2. This surprising
outcome can be understood if we delve into the ground-
truth labeling procedures. The images taken from the field
have many complex regions due to fuzziness of image, par-
tially occluded disease patches, and disease patches on the
stem. Many disease patches that fall into these categories
were not annotated while creating the ground-truth dataset.
Also, for the human annotator, there is often no clear distinc-
tion between the foreground and background features,
whether for disease patches or the leaves. The human anno-
tator, for example, has annotated (shaded region shown in
Figures 6(a) and 7(a)) only clearly distinct features of disease
or leaf patches. However, our trained models have correctly
predicted several unlabeled disease patches in the back-
ground as disease (Figures 6(b) and 7(b)). Since these “vague”
disease patches have not been labeled in the ground-truth
dataset, they end up lowering the mAP and mAR param-

eters, despite the correct classification by the model.
Hence, the ground-truth annotation might need to be
more inclusive of disease patches to better represent the
performance score.

3.2. Manual Analysis of the Detection Model. Considering the
challenges of ground-truth labeling, we attempted a more
realistic quantification of disease patch detections by manu-
ally verifying the outputs of the 4-class model (Table 3).
The correct disease patch predictions were categorized into
two true-positive categories: TP1 reflects the correct detec-
tions that match the ground truth while TP2 reflects correct
disease detections that have not been annotated in the
ground truth. The same exercise is carried out for the infected
leaf and healthy leaf classes also. Table 3 summarizes the
results of manually determining the detection performance
on the test dataset, for all color spaces. It can be inferred
that among the six color space models, the model trained
on HSL color space has the best disease detection with 464
(TP1) patches detected. The LAB and YCrCb color space
trained models have the best combined four-class perfor-
mance metrics of 98.6% (combined precision) and 85.8%
(combined recall), respectively. The YCrCb model shows
maximum true disease detection (TP1 + TP2) of 647 dis-
ease patches. The infected leaf patches were detected better
by the HSV color space model with 341 true detections. It
was observed that HSL, HSV, LAB, and YCrCb models
performed better than the RGB color space model for
the detection of disease patch and infected leaf. In all color
space instances of the 4-class model, very few FP are
observed for disease patch class while most of the FP in
the infected leaf class are misclassifications of a healthy
leaf.
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FIGURE 8: Sample image and box plot of the pixel intensities of the three channels for each color space, for the disease, soil, and leaf patches
(channel 1, channel 2, and channel 3 are represented by red, green, and blue color, respectively in the box plots). Mean (¢) and standard
deviation (o) corresponding to the box plots are also provided for numerical comparison.

3.3. Analysis of the Role of Color Spaces. Hadji et al. [45] have
previously shown that the histogram of image intensities is
used broadly for recognition and retrieval in an image data-
base. For a better understanding of the effect of each color
space on the potato leaf dataset, the histogram trends of var-
ious color components in the image can be observed [46].
Figure 8 shows a histogram analysis on thirty randomly
selected potato leaf images with blight symptoms. Each
image was of 2448 x 3264 pixels and further divided into
image patches of 200 x 200 pixels. All patches were manually
labeled into classes of blight disease, healthy leaf, soil, and
background. The count of patches for each class was as fol-
lows: the blight disease class contained 844 patches, the
healthy leaf class contained 2216 patches, the soil class

contained 102 patches, and patches that did not meet the pre-
determined patch size and features were discarded. The pixel
intensity distribution for patches of disease (D), soil (S), and
leaf (L) regions in the form of a box plot with the mean (y)
and the standard deviation (o) for each channel of the color
space is shown.

It is observed from Figure 8 that each of the channels of
the RGB color space shows pixel distribution with a large
spread that overlaps with the adjacent regions. This is due
to varying illumination conditions across images, which
equally affect the R, G, and B channels. Only for channel 2
is there some separation between the distribution of disease
and leaf regions. This color information might be used by a
deep learning model for classification. Similar to the RGB
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FIGURE 9: (a) Sample output image, corresponding visualization of the leaf, and disease-relevant feature map for (b) 2c and (c) 5¢ layers of the

RGB color space detection model.

color space, the XYZ color space has a wide distribution of
intensity values for all the components. Here, channel 2 has
better separation between soil and leaf regions.

Conversion to HSL from RGB color space restricts the
range of certain components such as hue, which are illumina-
tion independent. Therefore, the hue component is expected
to have a narrow range for all regions. Thus, it can be
observed that although each of the HSL channels’ distribu-
tion overlaps across all regions, the overlap is minimum for
the hue channel. The many outliers might still make classifi-
cation difficult using only hue information. Similar to HSL,
the HSV color space has the same hue information. Com-
pared to HSL, the HSV has more spread in pixel intensity dis-
tribution for channels 2 and 3. This might lead to reduced
performance of the detection model. In the case of LAB,
channel 1 (lightness) varies according to lighting conditions.
The component a * and b *, represented by green and blue
boxes, respectively, are the green-red component and a
blue-yellow component of the image. From Figure 8, it can
be observed that a* and b* components have a narrow range
of pixel intensity values. Here, the a* component shows sep-
aration in values for leaf, soil, and disease regions. Similarly,
the b* component has a very narrow overlapping area. This
clear segregation in the ax and b% components could help
in better classification and detection models. For the case of
YCrCb, blue-difference chroma and red-difference chroma
have narrow spreads for different regions. The red box repre-
sents the luma component; green and blue boxes represent
blue and red-difference chroma, respectively. In channel 2,
the soil and the leaf regions are distributed apart from each
other while all other channels overlap in their distributions
for the different regions. Thus, the histogram analysis helps
to understand the color complexity of different patches/
regions and it is observed that the color information will
solely not lead to good segmentation between disease, soil,
and leaf regions. Higher-level features like the texture of the
disease region and leaf venation will need to be used by the
deep learning model for segmentation, in addition to color.

3.4. Feature Map Observations. The characterization of blight
disease, soil, and leaf regions by the CNN can be observed
from the deconvolutional layers. The deconvolutional net-
work maps the feature activity back to the input pixel space
by using the same components of the convolutional layer
(filtering, pooling) in the reverse order [25, 26]. The feature

maps of the different stages of ResNet, trained for four-class
detection include a number of relevant ones showing features
of leaves and disease patches. Figure 9(a) shows the sample
output image for the RGB color space detection model.
Figures 9(b) and 9(c) both show the visualization of the leaf
feature and disease patch feature side-by-side for the 2c and
the 5c layer, respectively. From Figure 9, it was inferred that
the leaf features are well learned. The activation in the 5c
layer shows that along with features of disease patch, features
of soil patch have also been learned by the detection model.
Overall, the 36™, 12™, 31", and 28™ feature maps of the 2
to the 5™ layers were strongly related to disease, flower in
the background, infected leaf, and healthy leaf, respectively.
The learning of leaf venation could be properly observed in
the feature maps.

It is interesting to observe that for the model trained with
HSL color space dataset, learning and extraction of the finer
leaf and disease patch features were observed in the visualiza-
tions for the second to the fifth stage of the model. From the
leaf feature maps, it could be inferred that a leaf’s feature is
better learned when it is in proper camera focus. The feature
maps for the sample HSL output image are shown in
Figure 10(a) with the fourth and the fifth stages shown in
Figures 10(b) and 10(c). Here, the diseased patch is clearly
learned apart from the background or the soil patches.

Similar to HSL, the HSV color space detection model has
learned the leaf venation and disease patch structures clearly,
which are visible in all the leaf feature maps of different stages
for the model shown in Figures 11(b) and 11(c). Here, a total
of 54 and 43 feature maps have a strong correlation with the
diseased patch and leaf feature, respectively.

The sample LAB color space image shows that the disease
patch (dark-blue color mask), the infected leaf (green color
mask), and the healthy leaf (red color mask) have all been
detected. From the feature maps shown in Figure 12(a), it is
observed that the diseased patch, the infected leaf, and the
healthy leaf features are learned separately. The YCrCb color
space model detects the various classes similar to the LAB
color space model with a sharp distinction between the three
classes.

4. Discussion

The primary aim of this work is to deliver blight advisories to
potato farmers in a timely and automated manner. As blight
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Fi1GURE 10: (a) Sample output image, corresponding visualization of the leaf, and disease-relevant feature map for (b) 4c and (c) 5c¢ layers of

the HSL color space detection model.
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FiGurk 11: (a) Sample output image, corresponding visualization of the leaf, and disease-relevant feature map for (b) 2c and (c) 4c layers of

the HSV color space detection model.
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FIGURE 12: (a) Sample output image, corresponding visualization of the leaf, and disease-relevant feature map for (b) 2c and (c) 3c layers of

the LAB color space detection model.

spreads fairly rapidly, farmers are advised to spray fungicide
as soon as blight occurrence is detected. Therefore, in addi-
tion to successfully detecting true occurrences of blight, the
blight model should also minimize the number of false-
positive detections. Otherwise, it can lead to unnecessary
spraying of fungicide and higher input costs to farmers. False
positives can be a problem when using simple binary classifi-
cation since the model might misinterpret the background
soil patches as occurrences of blight and give a false alarm.
Therefore, both a 2-class detection model and a 4-class detec-
tion model are explored in this work.

The use of various color space transformations for pre-
processing the data enables higher detection accuracy by cir-
cumventing the variations in lighting conditions on the field.
While this work has presented the performance of individual

color models, one may easily create a consensus system using
multiple color models in parallel, to further enhance the
detection. This kind of software and algorithmic approach
to processing RGB images can be far more cost-effective than
the use of multispectral or hyperspectral cameras. Also, RGB-
based data acquisition and analyses are transferable to smart
phones that are usually affordable to farmers.

The underpinnings of any successful detection model are
the quality and quantity of training data. Image data in par-
ticular can vary greatly in field environments due to occlu-
sions of the disease regions due to neighboring leaves or
stems; out-of-focus target regions due to movement of the
sensor or the target leaves themselves; illumination variation
due to the season, time of the day, and angle of imaging; and
morphological variations of leaves in terms of size, shape,
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and texture. Therefore, a significant contribution of this work
is in the collection of diverse field images of potato across dif-
ferent geographies and time instants to ensure a heteroge-
neous training data.

Modern cell phone cameras have improved in their imag-
ing capability along with the software-enhanced image pro-
cessing offered by such phones. The acquisition of data
using a variety of cell phones might lead to a model that
can find wide applicability when many farmers are hesitant
to adopt/invest in aerial or ground-based phenotyping equip-
ment. Apart from model performance, inference time and
memory space utilization are also important metrics for
smart phone application. Therefore, the challenge will be to
reduce the model size, while retaining its performance. Infer-
ence from a single image presently takes about 1-2 seconds,
which makes it of practical value.

In practice, the farmer will need alerts of even a single
occurrence of blight to contain it in the initial stage. In this
context, it may be noted that the mAP and mAR scores pro-
vided in Table 3 are quite conservative due to the underlying
concept of ToU. While evaluating the performance of the
model, a detection is considered correct only if the model is
able to place a bounding box around the disease that has at
least 50% area of intersection with a ground-truth box
demarcated by an expert. While this provides good standard-
ization for model evaluation across various application
domains, it may be noted that in the context of disease detec-
tion, the performance of the model is gauged depending on
how the expert annotates the ground truth. Figure 8, on the
other hand, gives a more liberal interpretation of the model
performance by testing how well the model can demarcate
the disease without reference to the specific ground truth
annotations. Thus, the results presented in Figure 8 show that
the model presented in this work can lead to more optimistic
outcomes for the potato farmer.

5. Conclusions

This work has demonstrated a potato blight detection model
using the deep learning approach that can be applied in field
conditions, for aiding the farmer in making real-time deci-
sions. In order to improve the detection performance of the
model on data acquired from easily available RGB sensors,
the input data are mathematically transformed to other color
spaces to aid the training of the Mask R-CNN model. It is
observed that training in the LAB color space provides the
highest performance metrics with 80.1% and 81.4% mAP
for the 2-class and 4-class detection models, respectively.
The XYZ color space has the lowest mAP values for both
detection models, yielding 77.4% and 70.8%, respectively.
However, the model can provide an optimistic performance
of ~98% overall precision for disease detection in the real-
world scenario. The feature maps of intermediate layers of
the trained detection models were observed, and it was found
that color spaces with better performance enabled the model
to learn fine features of the disease patch, the leaf patch, and
the soil patch such as color, texture, leaf venation, and leaf
shape. The inference time per image and size of the detection
models allow quick response when deployed in the field. This
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work could be extended to gauge the disease severity by
quantifying the number and the size of blight disease patches
per leaf.

Data Availability

All data used to train and test the model presented in this
paper is freely available upon request.
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